
Locking and Cache Improvements for eXist-db

Adam Retter, Evolved Binary

February 5, 2018

Abstract

Since late February 2017 we (Evolved Binary Ltd) have been working on some low-
level architectural changes in eXist-db to improve concurrency, scalability, and trans-
action isolation. In particular we have been focused on the lock implementation used
in eXist-db and how those locks are applied (i.e., the locking policy). Much of this work
was inspired by the requirements for “Granite”. Granite is an R&D project of Evolved
Binary, which is exploring the next generation replacement for eXist-db.
This technical report details the problems we set out to solve, the options identified,
and the choices made along the way to releasing an experimental branch of eXist-db
(which contains a rewritten locking subsystem and new Collection cache): https:
//github.com/evolvedbinary/exist/tree/locking-and-cache-improvements_report.
There are also binaries available from: https://www.evolvedbinary.com/technical-
reports/exist-db/locking-and-cache-improvements/.
This study focused on eXist-db 3.2.0 at initiation, but it is still entirely valid for eXist-db
3.6.1 (which is the latest version of eXist-db at the date of publication of this report).

Problem Statement

Granite offers true user-controllable transactions with isolation. The isolation is pro-
vided by a read-through per-transaction PUL (Pending Update List), which is layered
on top of a database snapshot provided by the underlying MVCC (Multiversion Con-
currency Control) storage system. Whilst we are aiming for a user configurable ACID
Isolation level, by default we are providing a level similar to Snapshot Isolation, which
is to say that by default we provide stricter isolation than PostgreSQL, SQLServer and
Oracle RDBMS (Read Committed) or MySQL (Repeatable Read). For further reading
on Transaction Isolation Levels see: A Critique of ANSI SQL Isolation Levels.
eXist-db does not state which isolation level it supports explicitly. We know that eXist-
db supports dirty reads, and as such it likely supports the lowest isolation level, i.e.,
Read Uncommitted. However, there is no support in eXist-db for user-controllable
transactions or online transaction rollback. The “transaction” mechanism in eXist-db is

1

http://www.evolvedbinary.com
http://www.exist-db.org
https://github.com/evolvedbinary/exist/tree/locking-and-cache-improvements_report
https://github.com/evolvedbinary/exist/tree/locking-and-cache-improvements_report
https://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/
https://www.evolvedbinary.com/technical-reports/exist-db/locking-and-cache-improvements/
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Snapshot_isolation
http://www.cs.umb.edu/cs734/CritiqueANSI_Iso.pdf
https://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Read_uncommitted

strictly limited to applying or undoing updates based on its WAL (Write Ahead Log)
for the purpose of crash recovery; the isolation level provided by eXist-db is controlled
exclusively through its use of locks.
Whilst Granite’s storage system and transactions support its more rigorous isolation
model, there is a blocker on our road to concurrent transaction isolationwithin eXist-db.
eXist-db maintains a cache of Collection and Document objects (think of them as file
entries, not DOM objects), one in-memory object for each “object” in persistent disk
storage. When a modification is made to a Collection or Document in eXist-db, this
in-memory object is locked, modified, and then (eventually) serialized to disk. This
cache, known as the Collection Cache, is not transaction aware and offers no isolation
whatsoever; there is just a single exclusive lock for modifying its content.
The issue here for Granite is that, if we access a Collection (or Document via a Col-
lection) object from the Collection Cache in one transaction, and modify it, then its in-
memory changes are immediately reflected in all other concurrent transactions. Whilst
we have achieved Snapshot Isolation and versioning of logical objects on disk, this
in-memory shared state in the form of the Collection Cache completely subverts our
transaction isolation.
Obviously, to ensure adherence to our transaction isolation level, we need to do some-
thing about the troublesome shared state of Collections within eXist-db’s Collection
Cache. Three possible solutions were identified:

1. Remove the Collection Cache
We could simply eliminate the shared in-memory cache of Collection and Doc-
ument objects. Rather than having just one Collection or Document object in-
memory for each on-disk Collection or Document, we would allow each trans-
action to have one object for each Collection or Document that it is workingwith.
Whilst this is the simplest solution to implement, it has some serious downsides.
First, there will be an increase in both memory-use (which will increase as the
number of concurrent transactions increases) and disk I/O (Input/Output) (as
each transaction has to read in the objects it needs, even if another transaction
already has done so). Second, Java incurs costs for object creation, and the sub-
sequent garbage collection of said objects. Finally, if different processes within a
transaction independently need access to the sameCollection or Document, then
that Collection or Document may be read from disk multiple times by the same
transaction.

2. Collection Cache per Transaction
Rather than having a global shared state Collection Cache, we could move to
one Collection Cache per transaction.
This has many of the same disadvantages of (1), but it does solve the issue that if
different processes within a transaction independently need access to the same
Collection or Document, it only needs to be read from disk once and then they
can use the same in-memory object.

2

https://en.wikipedia.org/wiki/Write-ahead_logging
https://en.wikipedia.org/wiki/Document_Object_Model

3. MVCC Collection Cache
We could replace eXist-db’s global Collection Cache, which is simply a pair of
HashMaps (and an LRU (Least-Recently-Used) size based eviction policy en-
forced on put), with some sort of concurrent data structure that allows us a stable
snapshot of a particular version of the cache, and updates to the cache are only
made at transaction commit time.
A complexity here which has to be accounted for, is that the objects in the cache
themselves are mutable, so even if we can see the correct version of a Collection
or Document in the Cache, we cannot modify it directly, otherwise that may be
reflected in other concurrent transactions. When modifying an object retrieved
from the cache, a copy of that object must first be made for our transaction, this
effectively adds another cache layer which is “transaction local”. Subsequently,
when the transaction wishes to work with the object, it must consult its trans-
action local cache first, before falling back to reading from the MVCC cache.
When the transaction commit succeeds, the transaction-local version is added
to theMVCC cache. In the case of an abort, it is simply abandoned. Whether the
transaction-local cache is a completely separate cache, or a transaction specific
version within the global cache is left as an implementation detail.
This approach is certainly the most complicated of the three to implement. It al-
lows for a global shared cache in which all transactions read from and only write
a new version to the cache at commit time. It also allows a transaction to read-
and-write to a locally cached copy should the transaction need to perform any
writes to an object. This should allow us to keep the amount of in-memory ob-
jects and reads from disk to a minimum, whilst allowing us to share immutable
state.

Always aiming for the best solution with Granite, we decided to implement an MVCC
aware Collection Cache (3), which ultimately means replacing eXist-db’s Collection
Cache with something better suited to the transactional nature of Granite. However,
whether we choose to replace the Collection Cache ((2) or (3)) or remove the Collection
Cache (1)), we discovered a serious architectural limitation which has to be addressed
first.
Before explaining the solution of the shared mutable Collection Cache state issue for
Granite we provide some insight into how the locking currentlyworks in eXist-db 3.2.0
to give the reader a foundation for understanding the locking and architectural issues
we encountered in eXist-db.

Locking in eXist-db 3.2.0

There are two main types of locks used in eXist-db: Collection Locks and Document
Locks. Both provide shared-exclusive modes, which allows us to lock for READ
(shared) or WRITE (exclusive). However, these locks are not the standard locks

3

https://en.wikipedia.org/wiki/Cache_replacement_policies#LRU
https://en.wikipedia.org/wiki/Readers–writer_lock
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

Figure 1: Diagram of MVCC Collection Cache

4

available in Java SE 8, so they may not, in fact, function in the same manner as a Java
developer may expect. In detail:

1. Collection Locks
Collections in eXist-db are very similar to folders on a file-system: they act
as physical containers of Documents. Access to a persistent Document in the
database is always through one Collection (or several). Even when the URI
of a Document in the database is known in advance, we still need to read the
Document from its container Collection.
Internally, eXist-db attempts to maintain one MutableCollection object in-
memory for each Collection in the database. Apart from the root Collection
/db, these Collection objects are lazily-loaded as they are accessed by the user
by reading their information from the collections.dbx file on disk. When
the Collection object is loaded it also reads in the document entry information
(name, permissions, metadata, etc.) for each document in the Collection and
creates a map of DocumentImpl objects which represent the documents in the
Collection.
The ability to keep all Collection objects inmemory is governed by theCollection-
Cache which provides a finite but configurable amount of space based storage
using a LRU eviction policy.
Every persistent Collection in the database when in-memory has an associated
lock object. This lock object is implemented in org.exist.storage.lock.

ReentrantReadWriteLock.
Collection Locks are used both to protect the internal state of the Collection ob-
jects and to prevent concurrent users from modifying simultaneously the same
Collection in the persistent storage file collections.dbx.
The behaviour of this lock is quite different from java.util.concurrent.locks.

ReentrantReadWriteLock in Java SE 8. In fact, eXist-db’s lock is closer to a mu-
tually exclusive lock such as java.util.concurrent.locks.ReentrantLock, hav-
ing these three properties:
1. Exclusive. Single Reader or Single Writer thread; whilst it records a

READ_LOCK or WRITE_LOCKmode, there is no shared lock.
2. Reentrant.
3. Allows Lock upgrading, i.e.: READ_LOCK -> WRITE_LOCK.

This lock implementation appears to be amodified version of EDU.oswego.cs.dl.
util.concurrent.ReentrantLock by Doug Lea. The modifications add the
facility for recording and retrieving the intended lock mode, but it still remains a
mutually exclusive lock.

2. Document Locks

5

https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/MutableCollection.java
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/dom/persistent/DocumentImpl.java
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/CollectionCache.java
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/CollectionCache.java
https://en.wikipedia.org/wiki/Cache_replacement_policies#LRU
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/MutableCollection.java#L89
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/MutableCollection.java#L89
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/ReentrantReadWriteLock.java
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/ReentrantReadWriteLock.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/ReentrantLock.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/ReentrantLock.html
https://en.wikipedia.org/wiki/Doug_Lea

Internally eXist-db uses a lazy loaded DOM model to work with nodes. For ex-
ample, when youworkwith a persistent document from the database via fn:doc
(or even fn:collection, a DocumentImpl object is accessed from the appropriate
MutableCollection object. As nodes within the document are requested from
the DocumentImpl DOM object, these are loaded on demand from the dom.dbx

file on disk, and appropriate org.exist.dom.persistent.*DOM objects are cre-
ated.
Every persistent Document in the database has an associated lock object which is
lazily initialized for its DocumentImpl object representation as needed. This lock
object is implemented in org.exist.storage.lock.MultiReadReentrantLock.
Document Locks are used to protect the internal state of the DocumentImpl ob-
jects. They are also used to prevent concurrent users from simultaneously modi-
fying the same document entry (name, permissions, metadata, etc.), and the doc-
ument’s nodes, held in the persistent storage files collections.dbx and dom.dbx

respectively.
The behaviour of this lock is similar to java.util.concurrent.locks.

ReentrantReadWriteLock in Java SE 8: it allows multiple-reader threads or a
single-writer thread, and supports reentrancy. However, it differs in that:
1. It is Writer biased, i.e., waiting writers are preferred over waiting readers.
2. It allows Lock upgrading, i.e.: READ_LOCK -> WRITE_LOCK.

This lock implementation appears to have been originally based on an imple-
mentation found in the Apache Turbine JCS project.

There are also several other ancillary locks that are used in eXist-db when interacting
with Documents and Collections. Briefly these are:

1. Exclusive intrinsic lock on theCollectionCache object, i.e.: synchronized(collectionCache).
2. An org.exist.storage.lock.ReentrantReadWriteLock is used to control con-

current access to the dom.dbx file.
3. An org.exist.storage.lock.ReentrantReadWriteLock is used to control con-

current access to the collections.dbx file.

Problems with Locking in eXist-db

As well as experiencing problems with locking in eXist-db either first-hand or indi-
rectly through helping users solve problems such as deadlocks, we have also spent a
significant amount of time studying and reviewing the locking code itself. From these
experiences and direct analysis we believe we have identified a number of problems
with locking in eXist-db:

1. Inconsistent Use of Locks

6

https://www.w3.org/TR/xpath-functions-31/#func-doc
https://www.w3.org/TR/xpath-functions-31/#func-collection
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/dom/persistent/DocumentImpl.java
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/dom/persistent/DocumentImpl.java#L114
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/MultiReadReentrantLock.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://wiki.apache.org/turbine/
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/ReentrantReadWriteLock.java
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/ReentrantReadWriteLock.java
https://en.wikipedia.org/wiki/Deadlock

Internally eXist-db takes a very inconsistent approach to locking. These
problems fall into two categories: 1) developer mistakes and 2) unsafe
design. If we ignore the first category which is more easily solved, and
focus on the latter category of unsafe design, we can see that classes like
org.exist.collections.Collectionmake it very difficult toworkwith aCollec-
tion in a safe manner. Consider this code excerpt from MuatbleCollection.java:
private final Lock lock;

...

private Permission permissions;

...

@Override

public Lock getLock() {

return lock;

}

...

@Override

final public Permission getPermissions() {

try {

getLock().acquire(LockMode.READ_LOCK);

return permissions;

} catch(final LockException e) {

LOG.error(e.getMessage(), e);

return permissions;

} finally {

getLock().release(LockMode.READ_LOCK);

}

}

@Override

public Permission getPermissionsNoLock() {

return permissions;

}

@Override

public void setPermissions(final int mode) throws LockException,

PermissionDeniedException {↪

try {

getLock().acquire(LockMode.WRITE_LOCK);

permissions.setMode(mode);

} finally {

getLock().release(LockMode.WRITE_LOCK);

}

}

7

https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/MutableCollection.java#L89

@Override

public void setPermissions(final Permission permissions) throws

LockException {↪

try {

getLock().acquire(LockMode.WRITE_LOCK);

this.permissions = permissions;

} finally {

getLock().release(LockMode.WRITE_LOCK);

}

}

Looking at the above code it is very difficult to understand howwe should work
with Collection Permissions in a safe manner. Several issues exist:
1. There are functions that imply access without locking and others which do

lock. This raises the question in themind of the consumer, of which should
be used, and when?

2. Collection#getPermissions() and Collection#getPermissionsNoLock()

both allow internal mutable state to escape. So whether we use the lock
method or the non-locking method, once a thread has a reference to the
Permissions object, it may directly modify its state. For an in-depth
explanation see (see: JCIP §3.2).

3. Memory visibility. If we call either #setPermisions(...) functions we can
see that a lock will be used to update the internal reference, but if another
thread were to call #getPermissionsNoLock() there is no guarantee that
they would see the updated permissions object, because no synchroniza-
tion was used1.

4. Invariant operations and compound operations are not thread-safe1 as
locks are taken and released between operations, and do not guard the
published state! E.g.:

if(collection.getPermissions().getOwner().getName().equals(”Bob”))) {

collection.getPermissions().setOwner(newOwner);

}

1 Unless the involved threads have already locked (or are attempted to Lock) the
Collection appropriately by using Collection#getLock() etc.
So how should one work with Collection objects safely? The JavaDoc for
Collection.java says:

Collections are shared between {@link org.exist.storage.DBBroker}
instances. The caller is responsible to lock/unlock the collection. Call
{@link DBBroker#openCollection(XmldbURI, LockMode)} to get a
collection with a read or write lock and {@link #release(LockMode)}
to release the lock.

So it seems that when working with a Collection we should ensure that we hold

8

https://www.amazon.com/gp/product/0321349601?ie=UTF8&tag=none0b69&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321349601
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/Collection.java#L40

the appropriate lock. If that is indeed the case, then what are we to make of the
Collection#getPermissions() and Collection#getPermissionsNoLock() func-
tions?
Weassert that, the current implementation of the Collection/MutableCollection
class by design allows, and maybe even encourages, developers to violate the
documented contract.
Historically we can see that unsafe publication of Permissions objects from
Collection was added as a mechanism for removing a deadlock in commit
e4af5d7. However, it likely introduced concurrency bugs where multiple
threads can simultaneously modify or read stale permissions for a Collection,
leading to inconsistent permissions on Collections.
In the opinion of the authors of this article, it is likely that the JavaDoc is correct
and the implementation iswrong. AsCollections are complex objects in eXist-db,
often upon which many compound operations must be sequentially performed
in a serializable fashion, it must surely be the responsibility of the caller to take
the appropriate lock when they first access the Collection, and then hold the
lock until they have completed their compound operation, at which point they
should release it. As such our above, compound operation in (4) would rather
look like:
Lock collectionLock = null;

try {

collectionLock =

collection.getLock().acquire(LockMode.WRITE_LOCK);↪

if(collection.getPermissions().getOwner().getName().equals(”Bob”)))

{

↪

↪

collection.getPermissions().setOwner(newOwner);

}

} finally {

if(collectionLock != null) {

collection.getLock().release(LockMode.WRITE_LOCK);

}

}

Further work in this area is discussed in the future work item Externalise Collec-
tion Locking.

2. Inconsistent Lock Interleaving
Examining the eXist-db source code, we can see several different interleaving
patterns for varying lock types. Some of the identified patterns:
1. Collection Acquire, Document Acquire, Collection Release, Document Re-

lease
MuatbleCollection#addBinaryResource(...)

9

https://github.com/eXist-db/exist/commit/e4af5d782a91df805f2a75bf332ef0dd980f2446
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/MutableCollection.java#L1654

public BinaryDocument addBinaryResource(final Txn transaction,

final DBBroker broker, final BinaryDocument blob,↪

final InputStream is, final String mimeType, final long

size, final Date created, final Date modified)↪

throws EXistException, PermissionDeniedException,

LockException, TriggerException, IOException {↪

...

getLock().acquire(LockMode.WRITE_LOCK);

try {

...

blob.getUpdateLock().acquire(LockMode.READ_LOCK);

} finally {

...

getLock().release(LockMode.WRITE_LOCK);

}

try {

...

} finally {

blob.getUpdateLock().release(LockMode.READ_LOCK);

}

return blob;

}

2. Collection Acquire, Document Acquire, Document Release, Collection Re-
lease
MuatbleCollection#removeBinaryResource(...)

public void removeBinaryResource(final Txn transaction, final

DBBroker broker, final DocumentImpl doc)↪

throws PermissionDeniedException, LockException,

TriggerException {↪

getLock().acquire(LockMode.WRITE_LOCK);

try {

if(doc.getResourceType() != DocumentImpl.BINARY_FILE) {

throw new PermissionDeniedException(”document ” +

doc.getFileURI() + ” is not a binary object”);↪

}

...

10

https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/MutableCollection.java#L1064

doc.getUpdateLock().acquire(LockMode.WRITE_LOCK);

} finally {

...

doc.getUpdateLock().release(LockMode.WRITE_LOCK);

getLock().release(LockMode.WRITE_LOCK);

}

}

It is alsoworth noting above that the calls to DocumentImpl#getResourceType()
and DocumentImpl#getFileURI() are not synchronized in any way, and
so may dangerously read stale data, or allow the document removal to
occur concurrently with another thread which is changing the Document’s
resource type, which may have otherwise prevented the removal.

3. synchronized(ProcessMonitor), Collection Acquire, Collection Release,
synchronized(ProcessMonitor)
NativeBroker#copyCollection(...)

final Lock lock = collectionsDb.getLock();

try {

pool.getProcessMonitor().startJob(ProcessMonitor.ACTION_COPY_COLLECTION,

collection.getURI());

↪

↪

lock.acquire(LockMode.WRITE_LOCK);

...

} finally {

lock.release(LockMode.WRITE_LOCK);

pool.getProcessMonitor().endJob();

}

4. synchronized(ProcessMonitor), CollectionAcquire, synchronized(ProcessMonitor),
Collection Release
MutableCollection#removeXMLResource(...)

db.getProcessMonitor().startJob(ProcessMonitor.ACTION_REMOVE_XML,

name);↪

getLock().acquire(LockMode.WRITE_LOCK);

try {

...

11

https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/NativeBroker.java#L1078
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/MutableCollection.java#L1000

} finally {

broker.getBrokerPool().getProcessMonitor().endJob();

...

getLock().release(LockMode.WRITE_LOCK);

}

One of the key axioms in developing concurrent code that avoids deadlocks is
to ensure that locks are always taken in the same order and released in the same
order. Interleaving the acquire/release of different lock types itself is not a prob-
lem, as long as it is consistent, i.e., there is only one pattern. When we have mul-
tiple patterns, we break the axiom and deadlocks are almost certainly assured
by design.
One solution to this problemwould be to establish a single pattern for each group
of different lock types that weworkwith, so as to ensure that acquisition/release
always happens in the same order.
Determining which pattern is correct is not a simple task, and is currently un-
documented in eXist-db. We identify the correct pattern and discuss its imple-
mentation in Collection and Document Lock Ordering.

3. Use of Incorrect Lock Modes - Shared vs. Exclusive
Whilst this class of problems is almost certainly caused by developer error, de-
sign can also cause confusion if interfaces and their locking requirements are not
properly documented and made explicit.
If a Shared (READ) lock is taken when writing to shared mutable state (instead
of the necessary Exclusive (WRITE) lock), then there is no guarantee whether
concurrent reading threads will see stale or current data.
If an Exclusive (WRITE) lock is taken when reading shared mutable state, whilst
there are data inconsistency concerns, the desirable concurrent operation of the
function is eliminated.
The actual use of incorrect lock modes in eXist-db (as of version 3.2.0) will not
cause problems with respect to Collections, since their locks are currently solely
exclusive. However, incorrect modes will certainly cause problems with Docu-
ments that have shared-exclusive locks.
Several such issues were identified and fixed in: PR 1295.
In addition, to reduce such issues in future, we discuss and provide a newmech-
anism in Ensure LockingAnnotations to help document and enforce locking con-
tracts.

4. Lock Leaks
eXist-db has no facility for managing the lifetime of a lock. Unfortunately this
means that if a lock is taken on an Object and the developer makes the error of
failing to release the lock, then that object will never be unlocked.

12

https://github.com/eXist-db/exist/pull/1295/commits

If the leaked lock was a shared lock then the Object still remains available for
reads, but will never become available for writes. If the leaked lock was an ex-
clusive lock, then the Object will not be available for reads, and will only be
available for writes if the thread is recycled and used by a different query. Ei-
ther way, leaked locks can block concurrent threads which attempt to access the
locked object.
We previously identified and fixed several such issues in: PR 1418.
To solve such issues by design, we discuss and provide a new mechanism in
ManagedLocks to help eliminate leaks.

5. Accidental Lock Release
Perhaps worse than leaking a Lock is releasing a lock which you never acquired.
Whilst locks must be released by the thread that owned them, because Locks are
re-entrant a single thread may have many holds on a lock.
Within a single thread, if a function releases a lock which it did not acquire, then
this can have disastrous consequences. Assuming that we already hold a lock on
an object, if wewere to release a lock and our hold count is 1, then this makes the
object available to other threads for concurrentmodification or reading, whereas
our thread’s code may assume that we still have synchronized access and like-
wise may modify or read the object. If the hold count is > 1 it will be decre-
mented, but unless we also have a lock leak, then we will still eventually get the
same outcome.
Also, of note, some Lock implementations (e.g., Java’s) will throw an exception
if you try to release a lock when the hold-count is zero, which could lead to
unexpected crashes. However, that is probably preferable to eXist-db’s locks,
which simplymask the underlying issue and thereby prevent the developer from
analysing the underlying problem and hopefully fixing it.
We previously identified and fixed several such issues in commit f6f3b85.
Such issues, may also be solved through the use of our newManagedLocks, and
possibly diagnosed with our Ensure Locking Annotations, which we later dis-
cuss.

6. Insufficient Locking
Wehave already briefly seen some exampleswhere not enough locking is done to
ensure consistency when concurrently accessing Collections. Let’s take another
example:
NativeBroker#openCollection(...)

private Collection openCollection(XmldbURI uri, final long address,

final LockMode lockMode)↪

throws PermissionDeniedException {

...

13

https://github.com/eXist-db/exist/pull/1418/commits
https://github.com/eXist-db/exist/pull/1418/commits/f6f3b85c0178d4e41e79a5c8c2ad73b040d0a525
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/NativeBroker.java#L921

synchronized(collectionsCache) {

collection = collectionsCache.get(uri);

if(collection == null) {

...

} else {

if(!collection.getURI().equalsInternal(uri)) {

LOG.error(”The collection received from the cache is

not the requested: ” + uri +↪

”; received: ” + collection.getURI());

}

collectionsCache.add(collection);

if(!collection.getPermissionsNoLock().validate(getCurrentSubject(),

Permission.EXECUTE)) {

↪

↪

throw new PermissionDeniedException(”Permission

denied to open collection: ” +

collection.getURI().toString() + ” by ” +

getCurrentSubject().getName());

↪

↪

↪

}

}

}

//Important :

//This code must remain outside of the synchronized block

//because another thread may already own a lock on the collection

//This would result in a deadlock... until the time-out raises

the Exception↪

//TODO : make an attempt to an immediate lock ?

//TODO : manage a collection of requests for locks ?

//TODO : another yet smarter solution ?

if(lockMode != LockMode.NO_LOCK) {

try {

collection.getLock().acquire(lockMode);

} catch(final LockException e) {

LOG.warn(”Failed to acquire lock on collection '” + uri +

”'”);↪

}

}

return collection;

}

Looking at the above code, reading the comments may lead one to believe that

14

the locking in this function has been thoughtfully tested to be correct, and that
the //TODO are merely suggesting better options.
Unfortunately the locking integrity in this function is flawed. The code’s
else branch makes several reads of the mutable shared state of Collection
without any locking at all. This could cause a mix of stale and current
data to be read, which makes the assertions unreliable at best. It also calls
CollectionCache#add(Collection) in an attempt to increment the LRU for
the Collection. However, there is no guarantee that another thread has not
pre-empted ours and modified the Collection object, which causes not only a
failure to update the relevant LRU, but potentially the addition of a different
Collection state to the cache.
Whilst the comments in the code are correct, that moving the locking inside the
synchronized block may cause a deadlock, there is no other option here if we are
to ensure the safe concurrent use of Collections. Any such arising deadlock could
be solved by either: (a) ensuring that the intrinsic lock on the CollectionCache
(i.e.: synchronized) and Collection Locks are always acquired and then released
in the same order when used together in the code base, or (b) switching to some
sort of lock-free data structure for the CollectionCache.
There should be no unlocked access to Collection’s internal state, we provide a
mechanism to assist in resolving this issue in the form of our Ensure Locking
Annotations.
Unfortunately by design, the ability to read Collections andDocuments in a non-
consistent (i.e., unsafe) manner in eXist-db is further compounded by having a
special lockmode named NO_LOCK. Passing LockMode.NO_LOCK to eXist-db’s locks
for acquire or release effectively bypassing any locking; one particularly striking
example of this is NativeBroker#getCollection(XmldbURI), which is used from
many locations in the eXist-db code base and acquires a reference to a Collection
object for the caller without any locking whatsoever. The caller then often goes
on to read the sharedmutable state of the Collectionwith no further locking, e.g.,
PermissionsFunction#getPermissions(XmldbURI):
private Permission getPermissions(final XmldbURI pathUri) throws

XPathException, PermissionDeniedException {↪

final Permission permissions;

final Collection col =

context.getBroker().getCollection(pathUri);↪

if(col != null) {

permissions = col.getPermissionsNoLock();

} else {

...

}

return permissions;

For further consideration of LockMode.NO_LOCK, see the future work item Elimi-
nate the erroneous LockMode.NO_LOCK.

15

https://en.wikipedia.org/wiki/Cache_replacement_policies#LRU
https://en.wikipedia.org/wiki/Cache_replacement_policies#LRU
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/Lock.java#L31
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/NativeBroker.java#L812
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/xquery/functions/securitymanager/PermissionsFunction.java#L411

A final example of insufficient locking is access to the CollectionCache. The
CollectionCache is used solely by NativeBroker, whichmostly enforces a rather
rigid (even overzealous) mutual exclusion access policy:
final CollectionCache collectionsCache = pool.getCollectionsCache();

synchronized(collectionsCache) {

...

}

However, access to the Collection Cache in NativeBroker#saveCollection(...)
is missing any synchronization at all:
@Override

public void saveCollection(final Txn transaction, final Collection

collection) throws PermissionDeniedException, IOException,

TriggerException {

↪

↪

if(collection == null) {

LOG.error(”NativeBroker.saveCollection called with collection

== null! Aborting.”);↪

return;

}

if(isReadOnly()) {

throw new IOException(DATABASE_IS_READ_ONLY);

}

pool.getCollectionsCache().add(collection);

This is very dangerous; this single un-synchronized write access by itself is po-
tentially destructive and completely eliminates any safety provided by the syn-
chronization used at other sites of access to the Collection Cache.
We address this issue in our larger piece of work where we remove the need
for synchronized access to the Collections Cache, see the section Replacing the
Collection Cache.

7. Overzealous Locking
Locks in eXist-db are re-entrant which allows them to be acquired many times
by the same thread. Acquiring a lock (even if it is un-contended) has a high cost
involved. Re-acquiring the same lock also has a cost, albeit not as high. When
we already hold a lock it is more performant to not attempt to re-acquire the lock,
obviously this can only be done if the developer is fully aware that their code has
already acquired the lock upstream.
Unfortunately in eXist-db there are code pathswhich are sub-optimal in thisway.
When a developer calls a public function, that function may acquire a lock and
then make many sub-function calls which also re-acquire the same lock. One
such concrete example is that of MutableCollection#allDocs(...):
@Override

16

https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/CollectionCache.java
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/NativeBroker.java#L1718
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/collections/MutableCollection.java#L389

public MutableDocumentSet allDocs(final DBBroker broker, final

MutableDocumentSet docs, final boolean recursive,↪

final LockedDocumentMap lockMap) throws

PermissionDeniedException {↪

List<XmldbURI> subColls = null;

if(getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

try {

getLock().acquire(LockMode.READ_LOCK);

try {

//Add all docs in this collection to the returned set

getDocuments(broker, docs);

...

@Override

public DocumentSet

getDocuments(final DBBroker broker, final MutableDocumentSet docs)

throws PermissionDeniedException, LockException {

...

try {

getLock().acquire(LockMode.READ_LOCK);

docs.addCollection(this);

addDocumentsToSet(broker, docs);

} finally {

getLock().release(LockMode.READ_LOCK);

}

return docs;

}

...

private void addDocumentsToSet(final DBBroker broker, final

MutableDocumentSet docs) {↪

try {

for (final DocumentImpl doc : copyOfDocs()) {

if

(doc.getPermissions().validate(broker.getCurrentSubject(),

Permission.READ)) {

↪

↪

docs.add(doc);

}

}

} catch(final LockException e) {

LOG.error(e);

17

}

}

...

private List<DocumentImpl> copyOfDocs() throws LockException {

getLock().acquire(LockMode.READ_LOCK);

try {

return new ArrayList<>(documents.values());

} finally {

getLock().release(LockMode.READ_LOCK);

}

}

From the call-graph of allDocs -> getDocuments -> addDocumentsToSet ->
copyOfDocuments we can see that the same READ lock on the collection lock is
acquired three times, when actually it only needs to be acquired once in allDocs.
Some refactoring of this code could reduce the number of lock re-acquisitions,
or better yet, some re-design of Collection locking itself would likely yield a
better result.
Rather than directly refactoring MutableCollection#allDocs, a better scheme
as previously mentioned, would be to entirely externalize the Collection locking
from the Collection objects. For a further discussion see the future work item
Externalise Collection Locking.
Another consideration is that at present everyCollection object in eXist-db has its
own associated lock object. This means that if we want to work with a hierarchy
of collections, for example moving the Collection /db/a/b (where b has children
c1 and c2) to the Collection/db/x/y/z, then we acquire exclusive locks on Col-
lections: /db/a, /db/a/b, /db/a/b/c1, /db/a/b/c2 and /db/z. A potential saving
would be to work with hierarchical locks, in this manner we would only need to
acquire write locks on /db/a and /db/x/y/z. This is a considerable saving, and
unlike the current scheme, stays linear regardless of the number of Collections
added to the database.
We address this issue in our larger piece of work where we investigate hierarchi-
cal locking schemes for Collection deadlock avoidance. See the section Collec-
tion Deadlock Avoidance Locking Schemes.

8. Correctness of Lock Implementations
1. Collection Locks

Examining the org.exist.storage.lock.ReentrantReadWriteLock lock
implementation used for Collection Locks in eXist-db, the exact prove-
nance of the code is not entirely discernible, but the Copyright header
indicates that it was originally taken fromDoug Lea’s ReentrantLock.java:

*

18

https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/ReentrantReadWriteLock.java

* File: ReentrantLock.java

*

* Originally written by Doug Lea and released into the public domain.

* This may be used for any purposes whatsoever without acknowledgment.

* Thanks for the assistance and support of Sun Microsystems Labs,

* and everyone contributing, testing, and using this code.

*

Although the implementation seems to differ significantly from the final
1.3.4 version release by Doug Lea, we currently have no reason to doubt
the changes made by the eXist-db project; as no direct issues with the lock
implementation have been reported. More worrying perhaps is this state-
ment from Doug Lea:

Note: Upon release of J2SE 5.0, this package enters maintenance
mode: Only essential corrections will be released. J2SE5 package
java.util.concurrent includes improved, more efficient, stan-
dardized versions of themain components in this package. Please
plan to convert your applications to use them.

2. Document Locks
Examining the org.exist.storage.lock.MultiReadReentrantLock lock
implementation used for Document Locks in eXist-db, again does not
reveal the exact provenance. The license header shows that the “original
code” is licensed under the Apache 2 license and the JavaDoc comments
state:

This is an adapted and bug-fixed version of code taken from
Apache’s Turbine JCS.

Unfortunately no further information can be found about where the imple-
mentation was taken from, or what “bug-fixed” constitutes. The code is no
longer used within any Apache project, and Turbine JCS has split off into
Apache Commons JCS.
Similarly, to Collection Locks, no direct issues have been reported with
the Document lock implementation to the eXist-db project, and so there is
currently no reason to doubt the validity of this implementation. Caveat
emptor, Java SE’s shared-exclusive lock ReentrantReadWriteLock does
not support lock upgrading as it is deadlock prone, but intriguingly
MultiReadReentrantLock does seemingly allow this. Further research
would be required to guarantee that MultiReadReentrantLock does not
exhibit problems with lock upgrading or other phenomena.

In summary, because the provenance and correctness of eXist-db’s lock imple-
mentations cannot be determined, it would seem appropriate to consider replac-
ing them with the standard ReentrantLock and ReentrantReadWriteLock locks
built into Java SE. It is also possible that the performance of Doug Lea’s original

19

http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/MultiReadReentrantLock.java
https://turbine.apache.org/
https://commons.apache.org/proper/commons-jcs/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

work has been improved upon in more recent iterations within Java SE. In addi-
tion the JVM also includes some limited support for deadlock detection which
is missing from eXist-db’s lock implementations. If moving to the standard Java
SE locks is not desirable for some reason (perhaps the lack of lock upgrading sup-
port) then, at the least the implementations in eXist-db must be proven correct;
a tool such as jcstress could be employed to help with this.
We discuss and present a solution for replacing eXist-db proprietary locks with
those from Java SE in Standard Java Locks.

9. Lack of Concurrency
eXist-db attempts to make use of synchronization between threads concurrently
accessing shared state to ensure safe (i.e., correctwith respect to serialized access)
management of data. Regrettably we have already seen that its use of locks (for
synchronization) falls short in several areas due to both design and developer
mistakes, potentially causing unsafe updates and stale reads.
In addition, the ability of eXist-db to scale vertically with increasing hardware
threads is limited in several places due to the choices of synchronization tech-
niques that have been made. The main areas blocking concurrent access to the
database are:
1. org.exist.storage.lock.ReentrantReadWriteLock

This lockwhich at first glance appears to be a shared-exclusive lock, is actu-
ally a mutually exclusive lock. It allows only one thread to hold the lock at
one time regardless of whether the desired mode is for reading or writing.
This lock is used for Collection Locks, and also all of the BTree based persis-
tent storage: dom.dbx, collections.dbx, structure.dbx, values.dbx, and
ngram.dbx.
This means that only a single thread can be accessing a Collection. Also,
only a single thread can be accessing a persistent BTree. This really is a
huge bottleneck. With CPUs offering many hardware threads these days,
we should at least be able to provide multiple-reader/single-writer opera-
tions.

2. synchronized(collectionsCache)

All functions that operate onCollections (apart from #saveCollection(...)

as discussed in (6)) in NativeBroker are almost immediately synchronized
on the Collection Cache object. For example:
private Tuple2<Boolean, Collection>

getOrCreateCollectionExplicit(final Txn transaction,

XmldbURI name) throws PermissionDeniedException,

IOException, TriggerException {

↪

↪

↪

name = prepend(name.normalizeCollectionPath());

20

http://openjdk.java.net/projects/code-tools/jcstress/
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/ReentrantReadWriteLock.java
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/NativeBroker.java

final CollectionCache collectionsCache =

pool.getCollectionsCache();↪

boolean created = false;

synchronized(collectionsCache) {

...

}

}

The problem here is that the intrinsic lock of the collectionsCache object
prevents any concurrency at all as access becomes mutually exclusive. In
addition, any concurrent threads that are in operation through an XQuery
or other API that wish to perform an operation of a Collection as part of
their transaction are now contending for that exclusive lock.
Synchronization on the Collections Cache was introduced in eXist-db in
2003 (commit 79512ea). Subsequently, additional synchronization on the
Collections Cache was added. This did not only ensure correct concurrent
access to the Collections Cache (commit d281072), but regrettably also pro-
vided a synchronization barrier for the entire Collection hierarchy (com-
mits bf5e843, ff1386c and aed3376); this barrier was used as a mechanism
to ensure that operations on Collections cannot deadlock. It does so by en-
tirely removing concurrency by only permitting a single operation at any
time!

Problem Solving Methodology

After an analysis of the locking and synchronization mechanisms in eXist-db and dis-
cussing some of the problemswith its implementation, wewill briefly summarisewhat
we are trying to achieve:
Ultimately our goal is to replace eXist-db’s Collection Cache in Granite with something
that is suitable for our concurrent transaction’s isolation level and therefore needs to
be MVCC aware.
Whilst examining the locking problems of eXist-db we discovered that many code-
paths for Collection operations are single-threaded because they are synchronized on
the Collections Cache. In Granite, wewant to exploit the concurrency available inmod-
ern CPUs which offer many hardware threads. Therefore, replacing the Collections
Cache by itself is not enough. We also have to remove the single-threaded synchro-
nization bottleneck. Unfortunately in eXist-db the synchronization on the Collections
Cache also acts as a guard against both data corruption (from poorly synchronized
concurrent threads) and deadlocks on Collection locks. If we want to replace the Col-
lections Cache with something that allows concurrent operations, we are first going to
have to fix the underlying locking issues in eXist-db to prevent data corruption, whilst

21

https://github.com/eXist-db/exist/commit/79512eae28b7219239f4a67965b185d1c560ab43#diff-16915756b76d37e10eba8b939a1e2f40R564
https://github.com/eXist-db/exist/commit/79512eae28b7219239f4a67965b185d1c560ab43#diff-16915756b76d37e10eba8b939a1e2f40R564
https://github.com/eXist-db/exist/commit/d2810724e2e8fc01071939fc01fdc5e447029ab6#diff-16915756b76d37e10eba8b939a1e2f40R615
https://github.com/eXist-db/exist/commit/bf5e843100745144115cbf064b2556417e80b240#diff-16915756b76d37e10eba8b939a1e2f40R774
https://github.com/eXist-db/exist/commit/ff1386cf2feef240a703ec24abd8d856b9f85b7e#diff-16915756b76d37e10eba8b939a1e2f40R802
https://github.com/eXist-db/exist/commit/aed33763c8ec22b010869ac3d8b5e9394d3f3cb4#diff-16915756b76d37e10eba8b939a1e2f40R1673

ensuring that eXist-db cannot deadlock on Collections when running threads concur-
rently.

Solutions

We have identified many distinct locking problems that need to be addressed, so we
will split these into distinct categories and describe our solution to each.

Lock Manager

Our first step was to introduce a central Lock Manager for eXist-db and move all lock
operations for Collections and Documents to this Lock Manager. The purpose for this
is that it conceptually changes the purpose of the locks:

• Locks are no longer owned by their respective resources.
• Locks are now associated with a key; this is the URI of the Collection or Docu-
ment.

• Should a bug lead to there being more than one Collection or Document object
instance inmemory for the same on-disk representation, theywill share the same
lock, whereas in the past they would have had differing locks which could have
led to further corruption under concurrent operations.

• Locks can be acquired for a Collection or Document before they exist. This is
significant as it allows us to lock a Collection (or Document) before it exists either
in-memory or on-disk. This stops two threads from racing to create the samenew
Collection and one overwriting the outcome of the other.

As acquiring and releasing locks is now centralised in the Lock Manager, this also al-
lows us to record information on the use of Locks in eXist-db (see Lock Table) and to
enforce policies on how locks are acquired (see Collection Locking Policy).

Lock Table and JMX

We implemented a Lock Table which can track both the current lock leases and the
threads waiting to acquire locks. This gives us great visibility into lock use in eXist-
db and allows us to trace and diagnose locking problems. The LockTable also allows
LockEventListeners to be registeredwhich asynchronously receive locking events. The
Lock Table uses a concurrent queue to try and reduce the overhead of lock tracing. The
concurrent queue allows the table to record a lock event from the calling code quickly
and then return control. A separate thread then processes the events and dispatches
them to lock event listeners.
The Lock Table is enabled by default and its data is available via JMX. Whilst the
overhead of the lock table is very low, if you wish to disable the lock table in a

22

https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/LockManager.java
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/LockTable.java

stable high-performance production environment, you can set the System Property
exist.locktable.disable to true.

Figure 2: Screenshot of JConsole showing Lock Table

Using JMX you can also ask the Lock Table to dump the current state to either the
console or the locks.log file. Doing so will produce an output like this (trimmed for
this article):
Acquired Locks

/db/test

COLLECTION

READ_LOCK concurrencyTest-remove-12 (count=1),

concurrencyTest-remove-23 (count=1),

concurrencyTest-remove-21 (count=1),

concurrencyTest-remove-1 (count=1),

concurrencyTest-query-1 (count=1),

concurrencyTest-query-3 (count=1),

concurrencyTest-remove-4 (count=1),

concurrencyTest-query-5 (count=1),

concurrencyTest-query-6 (count=1),

concurrencyTest-query-16 (count=1),

concurrencyTest-query-15 (count=1),

concurrencyTest-remove-18 (count=1),

concurrencyTest-query-8 (count=1),

concurrencyTest-query-14 (count=1),

concurrencyTest-remove-9 (count=1),

23

concurrencyTest-query-9 (count=1),

concurrencyTest-query-19 (count=1),

concurrencyTest-query-13 (count=1),

concurrencyTest-query-12 (count=1)

/db

COLLECTION

INTENTION_WRITE concurrencyTest-remove-0 (count=1)

INTENTION_READ concurrencyTest-remove-12 (count=1),

concurrencyTest-remove-23 (count=1),

concurrencyTest-remove-21 (count=1),

concurrencyTest-remove-1 (count=1),

concurrencyTest-query-1 (count=1),

concurrencyTest-query-3 (count=1),

concurrencyTest-remove-4 (count=1),

concurrencyTest-query-5 (count=1),

concurrencyTest-query-6 (count=1),

concurrencyTest-query-16 (count=1),

concurrencyTest-query-15 (count=1),

concurrencyTest-remove-18 (count=1),

concurrencyTest-query-8 (count=1),

concurrencyTest-query-14 (count=1),

concurrencyTest-remove-9 (count=1),

concurrencyTest-query-9 (count=1),

concurrencyTest-query-19 (count=1),

concurrencyTest-query-13 (count=1),

concurrencyTest-query-12 (count=1)

/db/test/test1.xml

DOCUMENT

WRITE_LOCK concurrencyTest-remove-0 (count=1)

/db/test/test27.xml

DOCUMENT

WRITE_LOCK concurrencyTest-remove-0 (count=1)

/db/test/test180.xml

DOCUMENT

WRITE_LOCK concurrencyTest-remove-0 (count=1)

...

Attempting Locks

/db/test

COLLECTION

WRITE_LOCK concurrencyTest-remove-0

/db/test/test1.xml

DOCUMENT

WRITE_LOCK concurrencyTest-remove-21

24

WRITE_LOCK concurrencyTest-remove-18

WRITE_LOCK concurrencyTest-query-12

WRITE_LOCK concurrencyTest-query-13

WRITE_LOCK concurrencyTest-query-15

WRITE_LOCK concurrencyTest-query-14

WRITE_LOCK concurrencyTest-query-16

WRITE_LOCK concurrencyTest-query-5

WRITE_LOCK concurrencyTest-remove-23

WRITE_LOCK concurrencyTest-query-9

WRITE_LOCK concurrencyTest-query-1

WRITE_LOCK concurrencyTest-remove-1

WRITE_LOCK concurrencyTest-query-8

WRITE_LOCK concurrencyTest-remove-9

WRITE_LOCK concurrencyTest-query-19

WRITE_LOCK concurrencyTest-remove-12

WRITE_LOCK concurrencyTest-query-6

WRITE_LOCK concurrencyTest-query-3

WRITE_LOCK concurrencyTest-remove-4

From the above output we can clearly see a deadlock, because: 1. Thread
concurrencyTest-remove-0 holds a lock of mode WRITE_LOCK on the Document
/db/test1.xml (amongst others), and wants to acquire a lock of WRITE_LOCK mode on
the /db/test Collection. 2. Thread concurrencyTest-remove-12 holds a lock of mode
READ_LOCK on the Collection /db/test, and wants to acquire a lock of WRITE_LOCK
mode on the Document /db/test1.xml.
Both threads want exclusive access to each others resources and neither is willing to
yield. There are more threads involved in the deadlock. However, just identifying
those two threads illustrates the issue.
Whilst it would be fairly easy to implement a LockEventListenerwhich provides dead-
lock detection in eXist-db, we have not done so due to other problems in eXist-dbwhich
would make acting upon such a situation unworkable without substantial changes;
eXist-db’s low-level transactions are not strong enough to support ACID rollback if we
abort (with the view to restarting) one of the transactions forming the deadlock. We
do plan to implement such detection and resolution in Granite for use when operating
in pessimistic locking mode.
If you wish to debug lock issues in eXist-db, you can trace the lock events stream by
enabling TRACE level logging for the LockTable in $EXIST_HOME/log4j2.xmlwhich will
write to the $EXIST_HOME/webapp/WEB-INF/logs/locks.log file:
<Logger name=”org.exist.storage.lock.LockTable” additivity=”false”

level=”trace”>↪

<AppenderRef ref=”exist.locks”/>

</Logger>

Additional debugging support is available in the form of two other facilities that may
be controlled by setting system properties:

25

https://en.wikipedia.org/wiki/Deadlock#Detection
https://en.wikipedia.org/wiki/Deadlock#Detection

• exist.locktable.sanity.check

When set to true, lock events are monitored to make sure that there are not
more lock releases than there have been lock acquisitions. If a negative bal-
ance is detected then messages similar to Negative READ_LOCKs… or Negative
WRITE_LOCKs will be written at ERROR level to locks.log.

• exist.locktable.trace.stack.depth

Determines howmany stack frames to trace and log for lock events. Tracing the
stack is expensive and so by default this is set to 0, for debugging 5 is often a
reasonable compromise between performance and information overload.

The facility to register custom listenerswith the Lock Table also allows us to easilywrite
tests which can check that the order, quantity, and/or mode of locking is correct. For
example, we may want to write a test that ensures that NativeBroker#openCollection
acquires and releases the correct locks and in the correct order.
To ensure that is the case, we implemented LockSymmetryListenerwhose job it is to en-
sure that lock acquisition and release is symmetrical, rather than interleaved, and reg-
ister it with the LockTable. NOTE: This symmetry of acquisition and release, should
not be confusedwith the asymmetrical release whenworkingwith Collection andDoc-
ument Locks (as discussed in Collection and Document Lock Ordering)!
@Test

public void openCollection() throws EXistException,

PermissionDeniedException, LockException, IOException,

TriggerException, InterruptedException {

↪

↪

final LockTable lockTable = LockTable.getInstance();

lockTable.setTraceStackDepth(TRACE_STACK_DEPTH);

final LockSymmetryListener lockSymmetryListener = new

LockSymmetryListener();↪

boolean registered = false;

try {

final BrokerPool brokerPool = existEmbeddedServer.getBrokerPool();

try (final DBBroker broker =

brokerPool.get(Optional.of(brokerPool.getSecurityManager().getSystemSubject()));↪

final Txn transaction =

brokerPool.getTransactionManager().beginTransaction()) {↪

lockTable.registerListener(lockSymmetryListener);

registered = true;

try(final Collection collectionA =

broker.openCollection(COLLECTION_A, LockMode.READ_LOCK)) {↪

//no -op

}

transaction.commit();

26

https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/test/src/org/exist/storage/NativeBrokerLockingTest.java#L367
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/LockTable.java#L230

}

} finally {

if(registered) {

lockTable.deregisterListener(lockSymmetryListener);

}

}

// wait for the listener to be deregistered

while(lockSymmetryListener.isRegistered()) {}

assertTrue(lockSymmetryListener.isSymmetrical());

}

Standard Java Locks

Due to both the concernswith (a) correctness of the lock implementations used in eXist-
db and (b) a lack of concurrency with eXist-db’s ReentrantReadWriteLock (which is
used for Collection Locks and BTrees), we have replaced eXist-db’s custom locks with
the standard locks from Java SE.
We switched bothCollection andDocument locks to use Java’s ReentrantReadWriteLock
which provides several benefits, some of which require further work to realize in
practice:

1. Access to in-memoryCollection objects is nowmulti-reader/single-writer rather
than exclusive. However, exploiting any performance gain will require further
effort to remove the mutually exclusive locks on the Collection Cache and the
collections.dbx BTree.

2. Java’s ReentrantReadWriteLock is built around an AbstractQueuedSynchro-
nizer which provides instrumentation and monitoring, which allows us to use
standard Java Tools like jconsole for deadlock detection (for exclusive mode
locks).

3. We now acquire the locks using Lock#lockInterruptibly(), which potentially
gives us the ability to abort lock requests. However, we would need better trans-
action support in eXist-db to support this safely.

4. Finally, we know the provenance of Java’s locking code. It is likely used by mil-
lions of applications daily, and we know that this code is well tested and under-
stood.

From a code perspective, statically replacing the use of eXist-db’s Collection and Docu-
ment locks with Java’s was fairly straight-forward (commits fe73e73 and 33420f5). The
only difficulties that were encountered were debugging code-paths at runtime where
eXist-db performed lock upgrading from READ to WRITE locks. Such upgrades are
forbidden in Java’s ReentrantReadWriteLock and lead to self-deadlocks. When any of

27

https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/ReentrantReadWriteLock.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html#lockInterruptibly--
https://github.com/evolvedbinary/exist/commit/fe73e7303c65b812070405d5030b66f16615c86e
https://github.com/evolvedbinary/exist/commit/33420f547b658f8acbe32b73e56f7d8ae492189b

these code paths were encountered, logging from the Lock Table and analysis of the
code enabled us to refactor to avoid such upgrades.
Unfortunately attempts to switch the locks used for BTrees (dom.dbx, collections.dbx,
etc…) from eXist-db’s exclusive ReentrantReadWriteLock to Java’s shared
ReentrantReadWriteLock proved much more involved than originally envisaged.
Operations on the BTree, whilst indicating whether a lock should be READ or WRITE,
were actually always obtaining an exclusive (similar to WRITE) lock. Each BTree is
tightly coupledwith a BTreeCachewhich is not thread-safe. Reads from the BTree often
actually involve writes to the BTreeCache, which means that a WRITE lock would be
needed where the operation on the BTree has indicated that a READ lock should be
used.
To compound this problem further, the BTree seems to use a lazywrite-throughmethod
with the BTreeCache, where theremay be items in the cache that have not yet beenwrit-
ten to disk, under such circumstances after reading a new item from disk to place in
the cache. This may cause an existing item to get evicted from the cache due to cache
policy, if the expired item is not yet persisted it must be written to disk. This also
causes some READ paths to become WRITE paths. In general, the BTree and its tight
coupling to the BTreeCachewith lock sharingmake it very difficult to determinewhere
READ locks are permissible instead of WRITE locks. It may even be impossible with
the current design to operate in a multi-reader/multi-writer fashion. Further investi-
gation and a clean interface between the BTree and BTreeCache, and pagemanagement
would be required to achieve the desired level of concurrency reliably.
That being said, as a less ambitious improvement, we were able to replace the locks
used in the BTree with Java’s standard exclusive lock ReentrantLock (commit e684210).
Whilst Granite has a completely new storage system, and therefore has no BTree or
BTreeCache and can make full use of the multi-reader/single-writer Collection access,
further work would be required for eXist-db to exploit this, see Refactor eXist-db’s
BTree Cache.

Managed Locks

Several of the identified locking problems in eXist-db including: Inconsistent Lock In-
terleaving, Lock Leaks and Accidental Lock Release, can be solved or mitigated by
adding facilities for managing the life-cycle of a lock that by design make it difficult
for a developer to incorrectly interleave locks or mismanage locks.
Influenced by Java 7’s try-with-resources we have introduced ManagedLock and
its subclasses ManagedCollectionLock and ManagedDocumentLock. These objects
allow you to work safely with the lifetime of a lock in the manner of RAII (Resource
Acquisition Is Initialization) via a try-with-resources statement, or a similar ARM
(Automatic Resource Management) facility such as scala-arm.
Until now working with locks in eXist-db looked something like:

28

https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/lock/ReentrantReadWriteLock.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://github.com/eXist-db/exist/blob/eXist-3.2.0/src/org/exist/storage/cache/BTreeCache.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html
https://github.com/evolvedbinary/exist/commit/e6842108f4e3ac43dcf0192211c8c1e85e16353f
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/ManagedLock.java
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/ManagedCollectionLock.java
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/ManagedDocumentLock.java
https://github.com/jsuereth/scala-arm

DocumentImpl doc = null;

try {

doc = ...

doc.getUpdateLock().lock(LockMode.WRITE_LOCK);

// do something with doc

} finally {

if(doc != null) {

doc.getUpdateLock().release(LockMode.WRITE_LOCK);

}

}

This pattern has some difficulties for the developer. They must remember to manually
release the lock and to guarantee that that always happens correctly it must be done
so in a finally block. You must also remember to release the lock with the same mode
that you used to acquire it.
Consider instead this pattern which is friendly to ARM using try-with-resources:

DocumentImpl doc = ...

try(final ManagedLock<Lock> managedLock =

ManagedLock.acquire(doc.getUpdateLock(), LockMode.WRITE_LOCK)) {↪

// do something with doc

}

Not only have we eliminated a great deal of boilerplate code, but we have also created
a much safer pattern. It is now impossible for the developer to forget to release the
lock, since omitting the trailing ‘}’ character would cause the code not to compile. In
addition the lockwill always be releasedwith the samemode that it was acquiredwith
as that is recorded immutably inside the ManagedLock object.
When using ManagedLock with try-with-resources it also makes it impossible to in-
terleave lock acquisition and release across different resources because the syntax con-
straints of the Java language enforce this for us.

Collection and Document Lock Ordering

We previously identified several different lock interleaving patterns. Here we concern
ourselves with resolving the inconsistent patterns in use where both Collection and
Document locks are used.
Initially we developed a pattern which is symmetrical with regards to its order of ac-
quisition and release of locks on Collections and Documents:

29

1. Get and Lock Collection
2. Get the Document from the Collection
3. Lock the Document
4. Perform operation(s) on the Document
5. Unlock the Document
6. Unlock the Collection

Such a pattern was easily implement safely in code using our ARM principled
ManagedLock and LockManager:

try(final ManagedCollectionLock colLock =

lockManager.acquireCollectionWriteLock(”/db”)) {↪

try(final ManagedDocumentLock docLock =

lockManager.acquireDocumentWriteLock(”/db/1.xml”)) {↪

// do something with doc

}

}

However, retaining the Collection lock when operating on a Document severely lim-
its concurrency. We suspected that it may be possible to perform many Document
operations without retaining the Collection lock. To understand this, we undertook a
research sub-project to investigate symmetrical vs. asymmetrical locking patterns. We
published the results of this separately in our technical report: Asymmetrical Locking
for eXist-db.
Our research and experimentation into Asymmetrical Locking in eXist-db concluded
that many operations on Documents can occur without retaining a Lock on the Docu-
ment’s Collection. In summary, Collections may simply be thought of as a container
of Documents. If an operation is to be made to a Document’s content or metadata only,
then we need not retain the lock on the Collection. We need only retain locks on the
Collection if we are to add, remove, or replace a Document.
As such, we revised our pattern to an asymmetrical pattern (with regards to its order
of acquisition and release of locks on Collections and Documents):

1. Get and Lock Collection
2. Perform any operation(s) that only require a Collection lock
3. Get the Document from the Collection
4. Lock the Document

30

https://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/
https://www.evolvedbinary.com/technical-reports/exist-db/asymmetrical-locking/

5. Perform any operation(s) that require both a Collection and Document lock
6. Unlock the Collection
7. Perform any operation(s) that require only a Document lock
8. Unlock the Document

Unfortunately as such an asymmetrical pattern is much harder to enforce safely in
a code implementation, so we settled on documenting the fact that Collection locks
should be released as early as possible, and modifying our ManagedLock to implement
an idempotent close() (commit d304904).

Locked Collections and Locked Documents

Whist Managed Locks provide us with improved syntax constructs which can ensure
the safe use of locks in eXist-db, they still require us to work directly with lock objects.
To provide a safer API for developers, we can actually build on that pattern, so that de-
velopers canworkwith Collections andDocuments without having to explicitly worry
about their locks.
To do this we have introduced the classes LockedCollection (commit 2bb7096) and
LockedDocument (commit 33420f5), which represent both their respective resource and
the associated lock lease taken when opening the Collection or Document. The names
of LockedCollection and LockedDocument were chosen to make it explicit to the de-
veloper that they have not only the resource they requested, but also a lock which
they must release. Both LockedCollection and LockedDocument are composed of the
resource and the lock, and by implementing java.lang.AutoCloseable they automat-
ically release the lock when the resource is closed.
Perhaps the easiest way to demonstrate their purpose is through code. Historically in
eXist-db you worked with Collections, Documents, and their associated locks using a
pattern similar to the following (symmetrical pattern illustrated):
Collection collection = null;

try {

collection = broker.openCollection(”/db/x/y”, LockMode.READ_LOCK);

DocumentImpl resource = null;

try {

resource = collection.getDocumentWithLock(broker, ”doc1.xml”,

LockMode.READ_LOCK);↪

// now do something with the document

} finally {

if (resource != null) {

resource.getUpdateLock().release(LockMode.READ_LOCK);

31

https://github.com/evolvedbinary/exist/commit/d30490479c9e70d9b32daab05bab73478f297f3f
https://github.com/evolvedbinary/exist/commit/2bb7096a1545832804c662a7557a0cd6a0d16452
https://github.com/evolvedbinary/exist/commit/33420f547b658f8acbe32b73e56f7d8ae492189b
https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html

}

}

} finally {

if(collection != null) {

collection.release(LockMode.READ_LOCK)

}

}

This pattern has several weaknesses. The developer must follow it exactly by remem-
bering to release both the Collection andDocument locks. To guarantee that the release
always happens correctly, it must be carried out in independent finally blocks. They
must also again remember to release the locks with the same mode that they used to
acquire them.
Consider instead this pattern which is friendly to ARM using try-with-resources:
try(final Collection collection = broker.openCollection(”/db/x/y”,

LockMode.READ_LOCK);↪

final LockedDocument resource = collection.getDocumentWithLock(broker,

”doc1.xml”, LockMode.READ_LOCK)) {↪

// now do something with the document

}

We can also revise this further to accommodate our pattern for asymmetrical locking
between Collections and Documents:
try(final Collection collection = broker.openCollection(”/db/x/y”,

LockMode.READ_LOCK);↪

final LockedDocument resource = collection.getDocumentWithLock(broker,

”doc1.xml”, LockMode.READ_LOCK)) {↪

// NOTE: early release of Collection lock inline with Asymmetrical

Locking scheme↪

collection.close();

// now do something with *just* the document

}

Not only does this represent a massive reduction in code, but it removes several bur-
dens from the developer which otherwise could mistakenly cause lock leaks, incorrect
lock interleaving, or accidentally releasing locks that they have not acquired.

Implementation Asymmetry
Atpresent there is some asymmetry between the implementations of LockedCollection
and LockedDocument, because we have trialled two different approaches:

1. LockedCollection - Uses a delegate inheritance pattern from Collection.

32

public class LockedCollection implements Collection {

private final ManagedCollectionLock managedCollectionLock;

private final Collection collection;

public LockedCollection(final ManagedCollectionLock

managedCollectionLock, final Collection collection) {↪

this.managedCollectionLock = managedCollectionLock;

this.collection = collection;

}

@Override

public void close() {

collection.close();

managedCollectionLock.close();

}

// delegates for all Collection methods to `collection`...

}

2. LockedDocument - Uses a composition pattern, and inherits from AutoCloseable.
public class LockedDocument implements AutoCloseable {

private final ManagedDocumentLock managedDocumentLock;

private final DocumentImpl document;

public LockedDocument(final ManagedDocumentLock

managedDocumentLock, final DocumentImpl document) {↪

this.managedDocumentLock = managedDocumentLock;

this.document = document;

}

public DocumentImpl getDocument() {

return document;

}

@Override

public void close() {

managedDocumentLock.close();

}

}

Each approach has both advantages and disadvantages:
• LockedCollection provides an easier API transition:

1. Advantage: A LockedCollection may be used with any existing function
that accepts a Collection parameter(s).

33

2. Disadvantage: At compile time when a developer is working with a
Collection the type system does not make it explicit whether they are
workingwith a LockedCollection or another type of Collection (potentially
unlocked). However, because Collection implements AutoCloseable,
the developer should always call close on the Collection regardless.
However, that was not always the case in eXist-db, so old code examples
may not show best practice.

• LockedDocument explicitly encodes changed behaviour into the API:
1. Advantage: A LockedDocument cannot be used where a DocumentImpl can

be. This causes the developer to pause and considerwhat has changed, and
will likely coerce them into either using ARM or manually calling close().

2. Disadvantage: Some careful extraction of the DocumentImpl from the
LockedDocument needs to be done to actually make use of the document.
This increases boilerplate code, for example:

try(final LockedDocument lockedDoc = broker.getXMLResource(pathUri,

LockMode.READ_LOCK)) {↪

final DocumentImpl doc = lockedDoc == null ? null :

lockedResource.getDocument();↪

if(doc != null) {

// do something with the doc

}

}

We have to effectively introduce two null checks everywhere where we work
with LockedDocument to avoid any NPE (Null Pointer Exception). This not only
increases boilerplate in our patterns but could also easily be missed by a naïve
developer.

It is likely that we will settle on an approach based on inheritance where we try and
combine strengths of both approaches: (a) by starting with inheritance we provide an
easier transition, and (b) we can also set out on a gradual project to sub-class function
parameters and return types in the API so that the objects used become explicitly those
of LockedDocument and LockedCollection where appropriate.
Further work in this area is discussed in the future work item LockedCollection vs
LockedDocument pattern.

Ensure Locking Annotations

Due to the concerns with (a) Use of Incorrect Lock Modes - Shared vs. Exclusive, (b)
Accidental Lock Release, and (c) Insufficient Locking, we have implemented a mecha-
nism for explicitly describing locking contracts and then enforcing them at runtime.

34

https://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html

We implemented a series of Java Annotations which can be added to method param-
eters and methods to explicitly describe the locking contract which is expected when
calling a Java method. These annotations fall into two groups:

1. @EnsureLocked and @EnsureUnlocked.
These annotations can be applied to either method parameters or methods them-
selves. Theydescribe the locking requirements of the parameters and return type
of a method call.

2. @EnsureContainerUnlocked and @EnsureContainerUnlocked.
These annotations can only be applied tomethods themselves. They describe the
locking requirements of the containing objects of which the methods are called.

We have annotated a number of methods in DBBroker (commit b853bbc), DocumentImpl
(commit 5f36219), and Collection (commit b853bbc) with these annotations to explic-
itly describe the expected locking contracts.
For example, DocumentImpl#copyOf(DocumentImpl, boolean):

@EnsureContainerLocked(mode=WRITE_LOCK)

public void copyOf(@EnsureLocked(mode=READ_LOCK) final DocumentImpl

other, final boolean preserve) {↪

...

}

The annotations on copyOf can be read as, when calling the method copyOf,
the calling thread must hold a WRITE mode lock for the Document repre-
sented by the DocumentImpl object on which the method is called (described by
@EnsureContainerLocked(mode=WRITE_LOCK)), and must also hold a READ mode lock
for the other Document represented by the DocumentImpl other object (described by
@EnsureLocked(mode=READ_LOCK)).
Another example, which shows that lock annotations can also be applied to URIs,
MutableCollection#MutableCollection(DBBroker, XmldbURI):
public MutableCollection(final DBBroker broker,

@EnsureLocked(mode=LockMode.READ_LOCK, type=LockType.COLLECTION) final

XmldbURI path) {

↪

↪

...

}

The annotations on MutableCollection can be read as, when calling the construc-
tor, the calling thread must hold a WRITE mode lock for the Collection described
by the XmldbURI path (described by @EnsureLocked(mode=LockMode.READ_LOCK,

type=LockType.COLLECTION)). The type value on the @EnsureLocked annotation

35

https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/EnsureLocked.java
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/EnsureUnlocked.java
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/EnsureContainerLocked.java
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/EnsureContainerUnlocked.java
https://github.com/evolvedbinary/exist/commit/b853bbca11af42b867927e85cd88aa45eb8b4844#diff-a4a35ad924719f7e68d2ecdf372255dd
https://github.com/evolvedbinary/exist/commit/5f3621955485fbb15fdba0d129dfd2382a0b2f78#diff-20238aa8aefcde9b28c4d04990a4847c
https://github.com/evolvedbinary/exist/commit/b853bbca11af42b867927e85cd88aa45eb8b4844#diff-b3550ab5e00605290db01f8e3f14bac0

allows the annotation to be used with any identifier which can be resolved to a lock of
a specific type.
Using AOP we also implemented an Aspect: EnsureLockingAspect, which can be wo-
ven into eXist-db at compile time. The EnsureLockingAspect is capable of monitoring
calls to methods which have been annotated with our ensure locking annotations and
reporting on violations of the locking contracts described by the annotations.
The EnsureLockingAspect can be compiled into eXist-db by adding the following to
$EXIST_HOME/local.build.properties:
enable.ensurelocking.aspect=true

The EnsureLockingAspect can be configured by means of four system properties:
1. exist.ensurelocking.enforce

Default is false. When set to true, after reporting on a violation of a locking
contract, a LockException will be thrown by the Aspect. This setting should be
used only in debugging circumstances; the Aspect throws the exception in such
a way that it is akin to a RuntimeException and may cause an immediate crash
of eXist-db or database corruption.

2. exist.ensurelocking.output

Default is console. May be set to either console or log. When set to console the
reporting is sent to Standard Out, when set to log the output is sent to Log4j and
maybe found in the log file: $EXIST_HOME/webapp/WEB-INF/logs/ensure-locking.log.

3. exist.ensurelocking.output.stack.depth

Default is 0. This number indicates the number of stack trace frames that should
be captured as part of any violation report.

4. exist.ensurelocking.trace

Default is false. When set to true, the Aspect will report on every annotated
method that it checks even if the locking contract is correctly adhered to.

Reports for lock contract violations output from the EnsureLockingAspect, look similar
to the following:
FAILED: Constraint to require lock mode WRITE_LOCK on Collection: /db/test FAILED:

<- org.exist.storage.lock.EnsureLockingAspect.

enforceEnsureLockedParameters(EnsureLockingAspect.java:161

<- org.exist.storage.NativeBroker.removeCollection(NativeBroker.java:1665)

<- org.exist.dom.persistent.NodeTest.tearDown(NodeTest.java:239)

<- sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

FAILED: Constraint to require lock mode READ_LOCK on Document: /db/test/test.xml FAILED:

<- org.exist.storage.lock.EnsureLockingAspect.

enforceEnsureLockedContainer(EnsureLockingAspect.java:303)

<- org.exist.dom.persistent.DocumentImpl.getDocId(DocumentImpl.java:197)

<- org.exist.indexing.range.RangeIndexWorker.removeCollection(RangeIndexWorker.java:363)

36

https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/src/org/exist/storage/lock/EnsureLockingAspect.java

<- org.exist.indexing.IndexController.removeCollection(IndexController.java:207)

FAILED: Constraint to require lock mode READ_LOCK on Document: /db/test/test.xml FAILED:

<- org.exist.storage.lock.EnsureLockingAspect.

enforceEnsureLockedContainer(EnsureLockingAspect.java:303)

<- org.exist.dom.persistent.DocumentImpl.getDocId(DocumentImpl.java:197)

<- org.exist.storage.structural.NativeStructuralIndexWorker.

getQNamesForDoc(NativeStructuralIndexWorker.java:540)

<- org.exist.storage.structural.NativeStructuralIndexWorker.

removeDocument(NativeStructuralIndexWorker.java:505)

FAILED: Constraint to require lock mode READ_LOCK on Document: /db/test/test.xml FAILED:

<- org.exist.storage.lock.EnsureLockingAspect.

enforceEnsureLockedContainer(EnsureLockingAspect.java:303)

<- org.exist.dom.persistent.DocumentImpl.getDocId(DocumentImpl.java:197)

<- org.exist.storage.structural.NativeStructuralIndexWorker.

getQNamesForDoc(NativeStructuralIndexWorker.java:541)

<- org.exist.storage.structural.NativeStructuralIndexWorker.

removeDocument(NativeStructuralIndexWorker.java:505)

FAILED: Constraint to require lock mode READ_LOCK on Document: /db/test/test.xml FAILED:

<- org.exist.storage.lock.EnsureLockingAspect.

enforceEnsureLockedContainer(EnsureLockingAspect.java:303)

<- org.exist.dom.persistent.DocumentImpl.getDocId(DocumentImpl.java:197)

<- org.exist.storage.structural.NativeStructuralIndexWorker.

removeDocument(NativeStructuralIndexWorker.java:507)

<- org.exist.storage.structural.NativeStructuralIndexWorker.

removeCollection(NativeStructuralIndexWorker.java:565)

Further work in this area is discussed in the future work item Resolve Ensure Locking
Annotations Reports.

Collection Locking Strategy

The minimum conditions for a Collection deadlock are where two concurrent transac-
tions wish to access the same collections but they do so in opposing order to each other
and with interleaved timing for example, where ŧ represents a concurrent Transaction,
and ₡ represents a Collection:

1. ŧ1 locks ₡1 for WRITE
2. ŧ2 locks ₡2 for WRITE
3. ŧ1 attempts to lock ₡2 for WRITE
4. ŧ2 attempts to lock ₡1 for WRITE

Whilst deadlocks onCollections in eXist-db are not impossible, they are rare as (almost)
all Collection operations are synchronized on the Collection Cache, making them mu-
tually exclusive.
Our intention to remove that synchronization means that it is much more likely that
concurrent transactions in eXist-db could deadlock. In addition now that we have

37

changed theCollection locks, they afford access in both a shared and an exclusivemode,
this compounds the possible deadlock scenarios as we can now also deadlock between
shared and exclusive access. The classic solution to this problem is deadlock avoidance,
which means that locks must always be acquired and released in the same order by all
concurrent transactions.

Iteration Ordering
To help avoid deadlocks in static Java code, we can impose a total global ordering of
Collections and Documents that are retrieved by iteration. Previously, the iteration of
sub-Collections was backed by an in-memory set which provided no ordering guaran-
tees:
public class MutableCollection implements Collection {

...

@GuardedBy(”lock”) private ObjectHashSet<XmldbURI> subCollections =

new ObjectHashSet<>(19);↪

...

@Override

public Iterator<XmldbURI> collectionIterator(final DBBroker broker)

throws PermissionDeniedException, LockException {↪

if(!getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

throw new PermissionDeniedException(”Permission to list

sub-collections denied on ” + this.getURI());↪

}

getLock().acquire(LockMode.READ_LOCK);

try {

return subCollections.stableIterator();

} finally {

getLock().release(LockMode.READ_LOCK);

}

}

@Override

public Iterator<XmldbURI> collectionIteratorNoLock(final DBBroker

broker) throws PermissionDeniedException {↪

if(!getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

throw new PermissionDeniedException(”Permission to list

sub-collections denied on ” + this.getURI());↪

38

}

return subCollections.stableIterator();

}

...

}

We modified this to instead use Java SE’s LinkedHashSet (commit 4fb968f) which pro-
vides a consistent iteration order.
public class MutableCollection implements Collection {

...

@GuardedBy(”LockManager”) private LinkedHashSet<XmldbURI>

subCollections = new LinkedHashSet<>();↪

...

private static <T> Iterator<T> stableIterator(final LinkedHashSet<T>

set) {↪

return new LinkedHashSet<>(set).iterator();

}

@Override

public Iterator<XmldbURI> collectionIterator(final DBBroker broker)

throws PermissionDeniedException, LockException {↪

if(!getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

throw new PermissionDeniedException(”Permission to list

sub-collections denied on ” + this.getURI());↪

}

try(final ManagedCollectionLock collectionLock =

lockManager.acquireCollectionReadLock(path)) {↪

return stableIterator(subCollections);

}

}

@Override

public Iterator<XmldbURI> collectionIteratorNoLock(final DBBroker

broker) throws PermissionDeniedException {↪

if(!getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

throw new PermissionDeniedException(”Permission to list

sub-collections denied on ” + this.getURI());↪

}

return stableIterator(subCollections);

39

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashSet.html
https://github.com/evolvedbinary/exist/commit/4fb968ffce577a0b2510f4195a987cd91ed8dd8b

}

The iteration order of objects in a LinkedHashSet is insertion order. The order in which
sub-Collection entries are stored on persistent disk is creation order. As such, we can
guarantee a global order of sub-Collection iteration which will always be oldest-to-
newest. This works well, since any newly created sub-Collection entry will be stored
in last position on disk and also iterated over last, which means the preceding order
is still valid. We implemented a set of Collection Ordering Tests to prove the ordering
implementation.
Likewise we wished to ensure a global order of iteration for Documents (within a
Collection). The iteration of documents was previously backed by Java SE’s TreeMap.
Whilst TreeMap does provide ordered iteration, it is based on providing an explicit
Comparator or having the objects in the map implement Comparable. Whilst eXist-db’s
DocumentImpl implemented Comparable, it did so by comparing document IDs. Un-
fortunately in eXist-db Document (and Collection) IDs can be recycled which means a
newer Document may be given an old (unused) ID which could change the iteration
order of documents. Previously the implementation looked like:
public class MutableCollection implements Collection {

...

@GuardedBy(”lock”) private final Map<String, DocumentImpl> documents =

new TreeMap<>();↪

...

@Override

public Iterator<DocumentImpl> iterator(final DBBroker broker) throws

PermissionDeniedException, LockException {↪

if(!getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

throw new PermissionDeniedException(”Permission denied to read

collection: ” + path);↪

}

return getDocuments(broker, new

DefaultDocumentSet()).getDocumentIterator();↪

}

@Override

public DocumentSet

getDocuments(final DBBroker broker, final MutableDocumentSet docs)

throws PermissionDeniedException, LockException {

if(!getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

40

https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/test/src/org/exist/collections/CollectionOrderTest.java
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

throw new PermissionDeniedException(”Permission denied to read

collection: ” + path);↪

}

try {

getLock().acquire(LockMode.READ_LOCK);

docs.addCollection(this);

addDocumentsToSet(broker, docs);

} finally {

getLock().release(LockMode.READ_LOCK);

}

return docs;

}

}

This time we modified MutableCollection to use a LinkedHashMap (commit 3ccd55b),
which like LinkedHashSet also provides a consistent iteration order, which is again
insertion order:
public class MutableCollection implements Collection {

...

@GuardedBy(”LockManager”) private final LinkedHashMap<String,

DocumentImpl> documents = new LinkedHashMap<>();↪

...

@Override

public Iterator<DocumentImpl> iterator(final DBBroker broker) throws

PermissionDeniedException, LockException {↪

if(!getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

throw new PermissionDeniedException(”Permission denied to read

collection: ” + path);↪

}

return getDocuments(broker, new

DefaultDocumentSet()).getDocumentIterator();↪

}

@Override

public DocumentSet

getDocuments(final DBBroker broker, final MutableDocumentSet docs)

throws PermissionDeniedException, LockException {

if(!getPermissionsNoLock().validate(broker.getCurrentSubject(),

Permission.READ)) {↪

41

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
https://github.com/evolvedbinary/exist/commit/3ccd55b72d54fb565cc58c6ded58b1c26e946ef6

throw new PermissionDeniedException(”Permission denied to read

collection: ” + path);↪

}

final Iterator<DocumentImpl> documentIterator;

try(final ManagedCollectionLock collectionLock =

lockManager.acquireCollectionReadLock(path)) {↪

documentIterator = stableDocumentIterator(documents);

docs.addCollection(this);

}

addDocumentsToSet(broker, documentIterator, docs);

return docs;

}

private static Iterator<DocumentImpl> stableDocumentIterator(final

LinkedHashMap<String, DocumentImpl> documents) {↪

return new ArrayList<>(documents.values()).iterator();

}

In addition, we also had to modify DefaultDocumentSet from using a unordered
Int2ObjectHashMap to using LinkedHashSet. Like sub-Collections, these modifications
ensure that sub-Documents are always iterated in the global order of oldest to newest.

Collection Deadlock Avoidance Locking Schemes
Whilst we can ensure a total lock ordering in the static Java code paths of eXist-db by
imposing a coding discipline (as above), we cannot ensure that this will be the case in
user defined XQueries or 3rd-party applications operating against eXist-db APIs. A
user may submit two different XQueries which are concurrently processed and access
the same Collections in different orders.
Typically if a deadlock is detected at runtime in a transactional system, there are two
ways to resolve it:

1) One of the transactions involved in the deadlock is aborted, any changes are
rolled-back and the user is notified of the error.

2) One of the transactions involved in the deadlock is rolled-back to a “safe-point”
where it is not contending for the same resources as the other transaction. Any
changes made after the safe-point are undone, its locks acquired after the safe-
point are released, and the transaction is suspended. This allows the other trans-
action to proceed. The transaction rolled-back to the safe point, may then be
resumed, possibly immediately or according to some schedule. This roll-back
mechanism may need to be invoked more than once to enable completion of all
transactions, but it does permit forward progress of the system as a whole. The
number of times a specific transaction is rolled back, undone, and resumed could

42

https://github.com/eXist-db/exist/blob/develop/src/org/exist/dom/persistent/DefaultDocumentSet.java

be limited by configuration, which if exceeded, reverts to the behaviour of (1).
Unfortunately the low-level transaction mechanism in eXist-db does not provide the
isolation strength or guarantees required to achieve either (1) or (2) under an ACID
contract. If a transaction in eXist-db aborts, the database may be left in an inconsistent
state. This makes automated deadlock resolution in eXist-db impossible (but not in
Granite), so for now eXist-db is stuck with some deadlock avoidance capability which
we can implement, but no deadlock resolution, meaning that deadlocksmay still occur
when using eXist-db.
Obviously, a database system which deadlocks and eventually leads to an unrespon-
sive system is completely unacceptable. Thus, we set out to find if there was a locking
strategy which was already known or could be devised which takes advantage of the
hierarchical structure of Collections in eXist-db to entirely avoid deadlocks.
Wewill examine several approaches thatwere investigated, for eachwewill refer to the
same Collection hierarchy (whose descendant paths are /db/a, /db/b and /db/x/y/z):

Figure 3: Diagram of Collection Hierarchy for testing

To accompany this Collection hierarchy we created 12 test scenarios for concurrent
operations on Collection hierarchies that must remain deadlock free:

1. Two Writers, Same Subtree, Parent first.

43

https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/test/src/org/exist/storage/lock/CollectionLocksTest.java#L245
https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/test/src/org/exist/storage/lock/CollectionLocksTest.java#L245

1. ŧ1 requests ₡/db/x/y for WRITE
2. ŧ2 requests ₡/db/x/y/z for WRITE
3. ŧ1 requests ₡/db/x/y/z for WRITE
4. ŧ2 requests ₡/db/x/y for WRITE

2. Two Writers, Same Subtree, Descendant first.
1. ŧ1 requests ₡/db/x/y/z for WRITE
2. ŧ2 requests ₡/db/x/y for WRITE
3. ŧ1 requests ₡/db/x/y for WRITE
4. ŧ2 requests ₡/db/x/y/z for WRITE

3. Two Writers, No common subtree, Left to right.
1. ŧ1 requests ₡/db/a for WRITE
2. ŧ2 requests ₡/db/b for WRITE
3. ŧ1 requests ₡/db/b for WRITE
4. ŧ2 requests ₡/db/a for WRITE

4. Two Writers, No common subtree, Right to left.
1. ŧ1 requests ₡/db/b for WRITE
2. ŧ2 requests ₡/db/a for WRITE
3. ŧ1 requests ₡/db/a for WRITE
4. ŧ2 requests ₡/db/b for WRITE

5. One Writer and One Reader, Same Subtree, Parent first.
1. ŧ1 requests ₡/db/x/y for WRITE
2. ŧ2 requests ₡/db/x/y/z for READ
3. ŧ1 requests ₡/db/x/y/z for WRITE
4. ŧ2 requests ₡/db/x/y for READ

6. One Writer and One Reader, Same Subtree, Descendant first.
1. ŧ1 requests ₡/db/x/y/z for WRITE
2. ŧ2 requests ₡/db/x/y for READ
3. ŧ1 requests ₡/db/x/y for WRITE
4. ŧ2 requests ₡/db/x/y/z for READ

7. One Writer and One Reader, No common subtree, Left to right.
1. ŧ1 requests ₡/db/a for WRITE
2. ŧ2 requests ₡/db/b for READ
3. ŧ1 requests ₡/db/b for READ
4. ŧ2 requests ₡/db/a for WRITE

8. One Writer and One Reader, No common subtree, Right to left.
1. ŧ1 requests ₡/db/b for WRITE
2. ŧ2 requests ₡/db/a for READ
3. ŧ1 requests ₡/db/a for WRITE
4. ŧ2 requests ₡/db/b for READ

9. Two Readers, Same Subtree, Parent first.
1. ŧ1 requests ₡/db/x/y for READ
2. ŧ2 requests ₡/db/x/y/z for READ
3. ŧ1 requests ₡/db/x/y/z for READ
4. ŧ2 requests ₡/db/x/y for READ

10. Two Readers, Same Subtree, Descendant first.
1. ŧ1 requests ₡/db/x/y/z for READ

44

2. ŧ2 requests ₡/db/x/y for READ
3. ŧ1 requests ₡/db/x/y for READ
4. ŧ2 requests ₡/db/x/y/z for READ

11. Two Readers, No common subtree, Left to right.
1. ŧ1 requests ₡/db/a for READ
2. ŧ2 requests ₡/db/b for READ
3. ŧ1 requests ₡/db/b for READ
4. ŧ2 requests ₡/db/a for READ

12. Two Readers, No common subtree, Right to left.
1. ŧ1 requests ₡/db/b for READ
2. ŧ2 requests ₡/db/a for READ
3. ŧ1 requests ₡/db/a for READ
4. ŧ2 requests ₡/db/b for READ

Attempt 1
Wewere initially inspired by the algorithm described in Concurrency of Operations on
B-Trees (Bayer and Schkolnick, 1977).
In particularly the algorithm described as “Solution 2” was selected due to its relevant
simplicity whilst still offering a deadlock-free guarantee. This algorithm makes use
of shared-exclusive locks and exploits the hierarchical nature of a tree via top-down
hand-over locking from root node to leaf node to ensure that deadlocks cannot occur
when performing operations on the tree.
The algorithm for Readers remains largely unchanged and can be described in pseudo-
code as:

1. Place a READ lock on /db;
2. Set currentCollection = /db;
3. while (currentCollection != desiredCollection) do

1. Place a READ lock on childCollection
2. Release READ lock on currentCollection
3. Set currentCollection = childCollection

4. end while
Bayer and Schkolnick’s algorithm for Updaters described in “Solution 2” falls back to
the Updaters algorithm from “Solution 1” if it detects that the leaf-node is unsafe. A leaf-
node is considered safe if the operation to perform upon it does not cause any modifi-
cations to its ancestors, otherwise it is considered unsafe. The Updaters algorithm from
Solution 1 provides a much more restrictive locking policy where exclusive locks may
be held on all nodes from root to leaf.
In eXist-db the only operation on a Collection which modifies an ancestor is a deletion
or creation of a Collection, which would either remove/add the Collection from/to its
parents list of child Collections. Unlike with operations on B-Tree leaf-nodes, which
may cause a split in ancestor-nodes, considered an unsafe operation, with Collections in
eXist-dbwe know ahead of timewhether the operationwill affect the parent Collection.

45

http://dl.acm.org/citation.cfm?id=48760
http://dl.acm.org/citation.cfm?id=48760

As such we have modified the Updaters algorithm, merging the locking policies of
Solution 1 and Solution 2 in the face of known unsafe operations.
Our algorithm for Updaters can be described in pseudo-code as:

1. if (/db == desiredCollection || unsafeOperation) then Place a WRITE lock on
/db else Place a READ lock on /db

2. Set currentCollection = /db;
3. while (currentCollection != desiredCollection) do

1. if (childCollection == desiredCollection || unsafeOperation) then Place a
WRITE lock on childCollection else Place a READ lock on childCollection

2. if not(usafeOperation && childCollection isParentOf desiredCollection)
then Release previous lock of currentCollection

3. Set currentCollection = childCollection
4. end while

Our algorithm enforces two locking policies for updaters:
1. Safe Operations - READ locking handover from root to parent of desiredCollec-

tion, thenWRITE lock handover onto the desiredCollection. At completion, only
a single WRITE lock will be held on the desiredCollection.

2. Unsafe Operations - WRITE locking handover from root to parent of desiredCol-
lection, then acquisition ofWRITE lock on the desiredCollection. At completion,
WRITE locks will be held on both the parent of the desiredCollection and the
desiredCollection itself.

To give a brief summary of how this would work, we explain the end-to-end locking
trace that would occur for scenario S1, assuming that none of the operations were un-
safe:

1. ŧ1:
1. locks ₡/db for READ
2. locks ₡/db/x for READ
3. unlocks ₡/db for READ
4. locks ₡/db/x/y for READ
5. unlocks ₡/db/x for READ
6. locks ₡/db/x/y/z for WRITE
7. unlocks ₡/db/x/y for READ

2. ŧ2:
1. locks ₡/db for READ
2. locks ₡/db/x for READ
3. unlocks ₡/db for READ
4. locks ₡/db/x/y for WRITE
5. unlocks ₡/db/x for READ

3. ŧ1:
1. locks ₡/db for READ
2. locks ₡/db/x for READ
3. unlocks ₡/db for READ
4. attempts to lock ₡/db/x/y for WRITE

46

4. ŧ2:
1. locks ₡/db for READ
2. locks ₡/db/x for READ
3. unlocks ₡/db for READ
4. locks ₡/db/x/y for READ
5. unlocks ₡/db/x for READ
6. attempts to lock ₡/db/x/y/z for WRITE

The trace above shows that after some development and the creation of unit tests, this
algorithm is not deadlock-free for our purposes. This algorithm only works when (as
described in the paper) “all paths from the root to a leaf node have the same length”. That
axiom holds for B-Trees but sadly not for a more generalised tree such as eXist-db’s
Collection hierarchy.

Table 1: Test Scenario Results for Attempt 1

Outcome S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Deadlock No Yes Yes Yes No Yes Yes Yes No No No No

With regards to our test-cases, this algorithm is only safe for test scenarios S1 and S5
because the timing order of the threads ensures that the higher node remains locked
by the first thread before any attempt by a subsequent thread to lock a lower node, and
test scenarios S9 through S12 because READ locks are shared locks and cannot block
other READ locks.

Attempt 2
Based on our experiences of implementing Attempt 1 and the traces we had gathered
fromour test-cases, we attempted to develop our own algorithm. Our algorithmwould
again utilize handover locking, butwould sacrifice some concurrency to try and remain
deadlock free.
Our algorithm “Hierarchical Handover Downgrade-Locking”, is very similar to Solu-
tion 2 of Concurrency of Operations on B-Trees (Bayer and Schkolnick, 1977), but it
starts with the stricter WRITE locks, and exploits the lock downgrading facility avail-
able in Java’s ReentrantReadWriteLock. The same notion of an unsafeOperation on
nodes applies, where the caller indicates whether the operation is a creation or dele-
tion operation at which point the WRITE lock on the parent node is kept.
The algorithm for Readers remains the same as in Attempt 1, whilst the algorithm for
Updaters can be described in pseudo-code as:

1. Place a WRITE lock on /db;
2. Set currentCollection = /db;
3. while (currentCollection != desiredCollection) do

1. Place a WRITE lock on childCollection

47

http://dl.acm.org/citation.cfm?id=48760
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html

2. if not (unsafeOperation && currentCollection isParentOf desiredCollec-
tion) then Place a READ lock on currentCollection

3. Release WRITE lock on currentCollection
4. Set currentCollection = childCollection

4. end while
So for example if a thread wished to WRITE_LOCK /db/x/y/z, the trace would look
like:

1. ŧ1:
1. locks ₡/db for WRITE
2. locks ₡/db/x for WRITE
3. locks ₡/db for READ
4. unlocks ₡/db for WRITE
5. locks ₡/db/x/y for WRITE
6. locks ₡/db/x for READ
7. unlocks ₡/db/x for WRITE
8. locks ₡/db/x/y/z for WRITE
9. locks ₡/db/x/y for READ
10. unlocks ₡/db/x/y for WRITE

From the trace above it should be seen that the thread holds the read locks from root to
parent of the collection it wishes to write to, and only the WRITE lock on the desired
Collection (or additionally the parent node if the operation is a deletion). This means
that nodes within a comb (i.e.: sub-tree) of the Collection tree may be unavailable for
writes during a write operation to a descendant collection, since the write thread will
also hold read locks on the ancestor Collections. Whilst this likely greatly reduces
write throughput it also makes it impossible to deadlock on Collections within the
same combof the tree. However, because the lock scheme is hierarchical, any combwill
always contain the root node. This scheme reduces the concurrency of entire Collection
Hierarchy to single-writer, whilst also allowing multi-reader on any Collections that
are not explicitly write locked.

Table 2: Test Scenario Results for Attempt 2

Outcome S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Deadlock Self Self Self Self Self Self Self Self No No No No

Unfortunately as can be seen by the results of our test scenarios our han-
dover downgrade locking scheme does not work in practice with Java SE’s
ReentrantReadWriteLock. These failures occur because Java’s ReentrantReadWriteLock
has no support for lock upgrading and will in fact cause any thread that holds a READ
lock and attempts to acquire a WRITE lock to deadlock on itself, a process known as
Self-Deadlocking.

48

Table 3: CompatibilityMatrix for ReentrantReadWriteLock accessmodes

S X
S Y N
X N N

The upgrade/downgrade rules are:
1. Self WRITE -> READ

However, if we redesign our scheme to be used with a locking implementation which
supports both lock downgrading and upgrading, we could perhaps achieve better re-
sults, where self-deadlocks are avoided.

Attempt 3
We redesigned the algorithm in Attempt 2 to work in a manner which whilst still re-
quiring both lock downgrading and lock upgrading, no longer has the ability to self-
deadlock. We did this by working with a lock implementation which introduces a
third mode, an upgrade lock, known as ReentrantReadWriteUpdateLock. Like At-
tempt 2, this scheme still reduces the concurrency of entire Collection Hierarchy to
single-writer, whilst also allowing multi-reader on any Collections that are not explic-
itly write locked.

Table 4: CompatibilityMatrix for ReentrantReadWriteUpdateLock access
modes

S U X
S Y Y N
U Y N N
X N N N

The upgrade/downgrade rules are:
1. Self UPDATE -> WRITE
2. Self UPDATE <- WRITE

Again the Readers algorithm remains the same, but theUpdaters algorithm ismodified
to downgrade from aWRITE lock to an UPDATE lock to signal that a write is occurring
but that reads may still occur where Collections are not explicitly WRITE locked (i.e.,
not where UPDATE locks are held), and can be expressed in pseudo-code as:

1. Place a WRITE lock on /db;
2. Set currentCollection = /db;
3. while (currentCollection != desiredCollection) do

49

https://github.com/npgall/concurrent-locks

1. Place a WRITE lock on childCollection
2. if not (unsafeOperation && currentCollection isParentOf desiredCollec-

tion) then
1. Place a UPDATE lock on currentCollection
2. Release WRITE lock on currentCollection

3. Set currentCollection = childCollection
4. end while

So, for example, if a thread wished to WRITE_LOCK /db/x/y/z, the trace would look
like:

1. ŧ1:
1. locks ₡/db for WRITE
2. locks ₡/db/x for WRITE
3. locks ₡/db for UPDATE
4. unlocks ₡/db for WRITE
5. locks ₡/db/x/y for WRITE
6. locks ₡/db/x for UPDATE
7. unlocks ₡/db/x for WRITE
8. locks ₡/db/x/y/z for WRITE
9. locks ₡/db/x/y for UPDATE
10. unlocks ₡/db/x/y for WRITE

Table 5: Test Scenario Results for Attempt 3 (requiring lock upgrading
support)

Outcome S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Deadlock No No No No Yes Yes Yes Yes No No No No

So we can see that this approach yields better results for our test scenarios than either
Attempt 1 or Attempt 2, but it is still not deadlock free. The deadlocks that we encoun-
tered for scenarios S5 through S8 occur between readers and writers under a specific
order of events, because the reader thread may read where a writer thread already
holds an update lock. This means that a reader can be granted a READ lock in the
presence of an UPDATE lock (held by the writer).
To illustrate further, the trace for the deadlock encountered in scenario S5 would be as
follows:

1. ŧ1:
1. locks ₡/db for WRITE
2. locks ₡/db/x for WRITE
3. locks ₡/db for UPDATE
4. unlocks ₡/db for WRITE
5. locks ₡/db/x/y for WRITE
6. locks ₡/db/x for UPDATE

50

7. unlocks ₡/db/x for WRITE
2. ŧ2:

1. locks ₡/db for READ
2. locks ₡/db/x for READ
3. unlocks ₡/db for READ
4. attempts to lock ₡/db/x/y for READ

3. ŧ1:
1. locks ₡/db for WRITE
2. attempts to lock ₡/db/x for WRITE

A deadlock is encountered because:
1. ŧ1 wishes to acquire theWRITE lock on ₡/db/x, but a READ lock is held on that

Collection by ŧ2.
2. ŧ2 wishes to acquire the READ lock on ₡/db/x/y, but a WRITE lock is held on

that Collection by ŧ2.

Attempt 4
We also made an attempt which was very similar to Attempt 3, but instead using
a locking implementation described in Fast Multi-Level Locks for Java (Gudka and
Eisenbach, 2010). Specifically we used a slightly modified implementation of https:
//github.com/kgudka/java-multilocks.
Whilst we didn’t expect a difference in the test scenarios with respect to Attempt 3, we
felt this was a valuable measure to ensure the integrity of the relatively unknown Reen-
trantReadWriteUpdateLock and MultiLock implementations. We confirm this below.
Also worth noting is that MultiLock is built on the same AbstractQueuedSynchronizer
as Java SE’s ReentrantReadWriteLock and therefore provides the same instrumentation
andmonitoring, again allowing us to use standard Java Tools like jconsole for deadlock
detection (exclusive mode locks only).

Table 6: Compatibility Matrix for MultiLock access modes

IS IX S SIX X
IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX Y N N N N
X N N N N N

For our purposes we only make use of the S (Shared), IX (Intention Exclusive) and X

(Exclusive) lock modes. Whereas in Attempt 3 we used an UPDATE lock to signal our
intention to write to a descendant Collection, here we will make use of IX. With this
modified scheme, we do not require lock upgrading, only lock downgrading.

51

http://pubs.doc.ic.ac.uk/fast-multi-level-locks/fast-multi-level-locks.pdf
http://pubs.doc.ic.ac.uk/fast-multi-level-locks/fast-multi-level-locks.pdf
https://github.com/kgudka/java-multilocks
https://github.com/kgudka/java-multilocks
https://github.com/npgall/concurrent-locks/blob/master/code/src/main/java/com/googlecode/concurentlocks/ReentrantReadWriteUpdateLock.java
https://github.com/npgall/concurrent-locks/blob/master/code/src/main/java/com/googlecode/concurentlocks/ReentrantReadWriteUpdateLock.java
https://github.com/kgudka/java-multilocks/blob/master/multilock/MultiLock.java
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html

The upgrade/downgrade rules are:
1. Self READ <- INTENTION_WRITE
2. INTENTION_WRITE -> WRITE

The readers algorithm remains that of Attempt 3, but the writers algorithm is slightly
modified, and can be expressed in pseudo-code as:

1. Place a INTENTION_WRITE lock on /db;
2. Set currentCollection = /db;
3. while (currentCollection != desiredCollection) do

1. if (childCollection == desiredCollection || (unsafeOperation&& childCol-
lection isParentOf desiredCollection))
1. then Place a WRITE lock on childCollection
2. else Place a INTENTION_WRITE lock on childCollection

2. if not (unsafeOperation && currentCollection isParentOf desiredCollec-
tion) then
1. Place a READ lock on currentCollection
2. Release INTENTION_WRITE lock on currentCollection

3. Set currentCollection = childCollection
4. end while

Table 7: Test Scenario Results for Attempt 4 (requiring Multi-level lock
support)

Outcome S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Deadlock No No No No Yes Yes Yes Yes No No No No

We can see that whilst we are using an explicit intention lock as opposed to an update
lock, the results are ultimately the same as Attempt 3 as expected. Again if we examine
the trace for the deadlock encountered in scenario S5, we see that the deadlock occurs
for an equivalent reason:

1. ŧ1:
1. locks ₡/db for INTENTION_WRITE
2. locks ₡/db/x for INTENTION_WRITE
3. locks ₡/db for READ
4. unlocks ₡/db for INTENTION_WRITE
5. locks ₡/db/x/y for WRITE
6. locks ₡/db/x for READ
7. unlocks ₡/db/x for INTENTION_WRITE

2. ŧ2:
1. locks ₡/db for READ
2. locks ₡/db/x for READ
3. unlocks ₡/db for READ
4. attempts to lock ₡/db/x/y for READ

52

3. ŧ1:
1. locks ₡/db for INTENTION_WRITE
2. attempts to lock ₡/db/x for INTENTION_WRITE

A deadlock is encountered because:
1. ŧ1wishes to acquire the INTENTIION_WRITE lock on₡/db/x, but a READ lock

is held on that Collection by ŧ2.
2. ŧ2 wishes to acquire the READ lock on ₡/db/x/y, but a WRITE lock is held on

that Collection by ŧ2.

Attempt 5
Having failed to adapt the B-Tree locking scheme described by Bayer and Schkolnick,
we next studied the hierarchical locking scheme devised in the paper Granularity of
Locks in a Shared Data Base (Gray, Lorie and Putzolu, 1975).
The paper is concerned with granularities of locking for simple hierarchies and/or
directed acyclic graphs. The gist of the locking scheme is that:

1. Locking occurs from the tree root to the most granular node of interest, i.e., the
root node of any sub-tree operation.

2. Locking a node, implies that all descendant nodes are also locked with the same
mode.

3. Multiple Lockmodes (IS (Intention Shared), IX (Intention Exclusive), S (Shared),
SIX (Shared and Intention Exclusive) and X (Exclusive)) are incorporated to im-
prove concurrency, weaker modes are used at higher-levels.

4. Clearly defines a scheme for resolving deadlock situations when locks are re-
quested dynamically e.g., by User APIs or XQuery.

The goal of the paper is to improve concurrent access to a hierarchy. It does this in as
deadlock-free a manner as possible by locking at the most granular level possible with
clearly defined modes of operation. When locks are requested dynamically, it reminds
us that we cannot guarantee deadlock-free operation, and so provides a deadlock res-
olution scheme.
The deadlock resolution scheme described in the paper requires the ability to preempt
a waiting lock request(s), and undo its changes since access was granted to the pre-
empted resources. Unfortunately as previously discussed, eXist-db’s low-level trans-
actions do not provide the guarantees necessary to safely, partially or completely, undo
a transaction.
As we cannot easily implement deadlock resolution in eXist-db, we must consider if
there is any manner in which we could modify this locking scheme to be more restric-
tive at the sacrifice of some concurrent throughput potential to provide the deadlock
free guarantee that we need.
Let us first examine the original behaviour of the locking scheme. The algorithm for a
reader, can be expressed by the following pseudo-code:

53

https://pdfs.semanticscholar.org/5acd/43c51fa5e677b0c242b065a64f5948af022c.pdf
https://pdfs.semanticscholar.org/5acd/43c51fa5e677b0c242b065a64f5948af022c.pdf

1. Set currentCollection = /db;
2. do

1. if (currentCollection == desiredCollection)
1. then Place a READ lock on currentCollection
2. else Place an INTENTION_READ lock on currentCollection

2. Set currentCollection = childCollection
3. while (currentCollection != desiredCollection)

As opposed to the previous algorithms that we attempted, locks are not handed-over,
rather intention locks are held on the ancestors of the desiredCollection. When we
are finished with the desiredCollection, we release all locks in the reverse order that
they were acquired.
Whilst the locking scheme offers the SIX mode as an optimisation to improve concur-
rency when an operation is likely to perform a complete scan of a sub-tree and an
occasional update, we have not yet implemented this due to time constraints. The
algorithm for an updater, is expressed by the following pseudo-code:

1. Set currentCollection = /db;
2. do

1. if (currentCollection == desiredCollection) then
1. Place a WRITE lock on currentCollection

2. else if (unsafeOperation && currentCollection isParentOf desiredCollec-
tion) then
1. Place a WRITE lock on currentCollection
2. break;

3. else
1. Place an INTENTION_WRITE lock on currentCollection

4. Set currentCollection = childCollection
3. while (currentCollection != desiredCollection)

Like the reader algorithm, there is no lock hand-over, all locks are held until the end
of the operation. Intention locks are again used to signal descendant operation in-
tent. Like in previous updater algorithms we keep the notion of an unsafe opera-
tion to indicate that the parent Collection will also be modified, but since a locked
node implies locking the entire sub-tree, if we need to WRITE lock the parent of the
desiredCollection, we need not also lock the desiredCollection, so we may escape
early; we can reason that granular sub-tree locking will in fact use less total locks for
deep hierarchies when locking happens at upper levels, but the weaker intention locks
may be held for long periods of time in comparison to handover locking schemes.
So for example if a thread wished toWRITE_LOCK /db/x/y/z for a safe operation, the
trace would look like:

1. ŧ1:
1. locks ₡/db for INTENTION_WRITE
2. locks ₡/db/x for INTENTION_WRITE
3. locks ₡/db/x/y for INTENTION_WRITE
4. locks ₡/db/x/y/z for WRITE

54

Whilst for an unsafe operation, the trace would look like:
1. ŧ1:

1. locks ₡/db for INTENTION_WRITE
2. locks ₡/db/x for INTENTION_WRITE
3. locks ₡/db/x/y for WRITE

For our implementation of this, we again made use of MultiLock.

Table 8: Test Scenario Results for Attempt 5

Outcome S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Deadlock No No Yes Yes No No Yes Yes No No No No

As can be seen, whilst we still get 4 scenarios that fail as we did in Attempt 3 and
Attempt 4, the only ones in common are scenarios S7 and S8, whilst S5 and S6 no
longer fail, and S3 and S4 are new failures.
To understand why for example scenario S5 no longer fails, yet scenario S3 now fails,
let us first study the trace for scenario S5:

1. ŧ1:
1. locks ₡/db for INTENTION_WRITE
2. locks ₡/db/x for INTENTION_WRITE
3. locks ₡/db/x/y for WRITE

2. ŧ2:
1. locks ₡/db for INTENTION_READ
2. locks ₡/db/x for INTENTION_READ
3. attempts to lock ₡/db/x/y for INTENTION_READ

3. ŧ1:
1. locks ₡/db for INTENTION_WRITE
2. locks ₡/db/x for INTENTION_WRITE
3. locks ₡/db/x/y for INTENTION_WRITE
4. locks ₡/db/x/y/z for WRITE
5. releases all of its locks

4. ŧ2 continues:
1. locks ₡/db/x/y for INTENTION_READ
2. locks ₡/db/x/y/z for READ
3. locks ₡/db for INTENTION_READ
4. locks ₡/db/x for INTENTION_READ
5. locks ₡/db/x/y for READ
6. releases all of its locks

We see that ŧ2 is blockedwaiting to acquire the INTENTION_READ lock on₡/db/x/y,
because ŧ1 holds the WRITE lock. However, ŧ1 is able to proceed because when it at-
tempts to acquire the locks on the same Collections as ŧ2 it is only requesting INTEN-
TION_WRITE locks which are compatible with the INTENTION_READ locks held by

55

https://github.com/kgudka/java-multilocks/blob/master/multilock/MultiLock.java

ŧ2.
So we understand why scenario S5 now passes, but why are scenarios S3 and S4 now
failing (along with S7 and S8)? Let’s examine the trace from scenario S3:

1. ŧ1:
1. locks ₡/db for INTENTION_WRITE
2. locks ₡/db/a for WRITE

2. ŧ2:
1. locks ₡/db for INTENTION_WRITE
2. locks ₡/db/b for WRITE

3. ŧ1:
1. locks ₡/db for INTENTION_WRITE
2. attempts to lock ₡/db/b for WRITE

4. ŧ2:
1. locks ₡/db for INTENTION_WRITE
2. attempts to lock ₡/db/a for WRITE

Here we can see the classic deadlock scenario where two threads hold exclusive access
on their respective resources and want exclusive access to the others resources, i.e.:

1. ŧ1 wishes to acquire the WRITE lock on ₡/db/b, but a WRITE lock is held on
that Collection by ŧ2.

2. ŧ2 wishes to acquire the WRITE lock on ₡/db/a, but a WRITE lock is held on
that Collection by ŧ1.

The traces for Scenarios S4, S7, and S8 are very similar, so from this we can conclude
that the locking scheme does a good job at deadlock avoidancewithin sub-trees but not
between different sub-trees. This actually makes a lot of sense as the locking scheme
is designed specifically for hierarchies.
Naivelywemight assume thatwe could integrate some constraints around sibling lock-
ing into our algorithm to resolve this deficiency. One considered approach could be
to determine if a sibling Collection of the desired Collection is locked for WRITE, and
if so rather than taking an INTENTION_WRITE on the parent Collection, to instead
take a WRITE lock on the parent, whilst such a solution does resolve S3, it ultimately
fails by moving the potential deadlock to differing structures, causing failures for S2,
S7 and S8. Likewise, we might consider an even stricter approach where if we detect a
sibling Collectionwhich is locked for write, we take onlyWRITE locks from root to our
desired Collection. Again this just moves the problem elsewhere, causing the failure
of similar scenarios.

Attempt 6
Due to dynamic queries (XQuery) or API calls that may be executed against eXist-db,
it is currently impossible to know all resources that will be required by a transaction,
therefore we have no way of statically enforcing the ordering of lock acquisitions. Ulti-
mately, we have to accept the otherwise well known conclusion that, as demonstrated

56

by our earlier attempts and explicitly discussed in Attempt 5, it will remain impossible
to have any form of concurrency when an exclusive operation is required on any one
Collection. To achieve anything better which is deadlock free we would require the
facilities of either:

1. Deadlock Avoidance: A facility to execute each query in a dry-run like mode
against a snapshot of the database, where we analyze its resource use, and then
re-execute it acquiring all locks in advance using some consistent global order-
ing, likewise only releasing them all when the transaction completes.

2. Deadlock Resolution: A facility to safely abort a transaction either partially or
fully when a deadlock situation is detected, ideally with the ability to restart the
transaction.

Does this mean that all has been for nothing? Whilst we may not have achieved the
multi-writer, multi-reader degree of concurrency that we desired for the Collection
Hierarchy, we still have one final option open to us, which is a global single-writer,
multi-reader for the Collection hierarchy in eXist-db. That is to say that a writer would
prohibit any concurrent writes or reads, whilst a reader would prohibit any concurrent
writes, but allow concurrent reads. This can be considered an improvement over
the existing mutually exclusive locking at both the individual Collection level, but
more prohibitively the global mutual exclusion forced by synchronizing on the
collectionsCache, this ensured that there was only ever one writer or one reader
when manipulating the Collection hierarchy.
When reduced to single-writer, multi-reader we could ultimately just provide a single
ReentrantReadWriteLock, but this has some disadvantages:

1. Refactoring to a single ReentrantReadWriteLock, would prohibit us from easily
offering alternative hierarchical locking schemes. This may be desirable for ad-
vanced users that know their queries and Collection structure, and are able to
operate in a manner which allows them the less restrictive locking scheme de-
scribed in Attempt 5 without triggering deadlocks.

2. Ultimately, further work to improve eXist-db for concurrent operations will
likely need a new fully transactional storage sub-system, such as that which is
being developed for Granite. For Granite, or other future concurrent improve-
ments in eXist-db’s storage sub-system, a robust hierarchical locking approach
that supports both coarse and fine-grained locks will likely be required as a
minimum.

With this in mind, we have rewritten the algorithms fromAttempt 5, offering the caller
the ability to choose between:

1. a new single-writer/multi-reader mode which is absolutely deadlock free, or
2. the previous adjacent-subtree-multi-writer/multi-reader.

The reader algorithm remains the same as before, but the writer algorithm is now ex-
pressed as:

1. Set currentCollection = /db;

57

2. do
1. if (currentCollection == desiredCollection) then

1. Place a WRITE lock on currentCollection
2. else if (unsafeOperation && currentCollection isParentOf desiredCollec-

tion) then
1. Place a WRITE lock on currentCollection
2. break;

3. else if not (multiWriter) then
1. Place a WRITE lock on currentCollection

4. else
1. Place an INTENTION_WRITE lock on currentCollection

5. Set currentCollection = childCollection
3. while (currentCollection != desiredCollection)

The newly introduced flag multiWriter, when set to false (i.e., single writer) ensures
that any writer will always acquire exclusiveWRITE locks from root to the desiredCol-
lection; when the next concurrent writer or reader comes along it will block as it will be
unable to acquire a lock on the root, until the first writer has completed its operation.

Table 9: Test Scenario Results for Attempt 6 (multiWriter = false)

Outcome S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
Deadlock No No No No No No No No No No No No

Finally we have an attempt which (when operating in single-writer/multi-reader
mode) prevents Collection deadlocks. Whilst this isn’t ideal, it likely improves on
eXist-db’s current approach and provides a platform for future improvements, whilst
allowing us to remove the troublesome global synchronization on the Collection
Cache.
The Lock Manager disables multiWriter by default, to ensure dead-lock free Col-
lection operations in eXist-db. If you have designed a Collection hierarchy for
your application that can avoid multi-writer/multi-reader deadlocks, then you
can enable multiWriter to improve performance by setting the System Property
exist.lockmanager.collections.multiwriter to true.

Replacing the Collection Cache

To prove our work has led us to the situation where we can indeed replace the global
synchronization on Collection Cache, we undertook a small additional piece of work
to replace the incumbent Collection Cache and the synchronization on it with a more
modern and concurrent implementation (commits 0a711e9, 640f06d, and 5a08fc5).
The previous thread unsafe Collection Cache was based on an LRU eviction policy
and provided a finite amount of object storage based on memory-use. We opted to

58

https://github.com/evolvedbinary/exist/commit/0a711e94d210765d91967ae3935964d6d2c0ea41
https://github.com/evolvedbinary/exist/commit/640f06d4e2cc9652a365811bc6cdf2b25749f7b7
https://github.com/evolvedbinary/exist/commit/5a08fc54d876ec6fe2a524ecf09eace100b0c62d
https://en.wikipedia.org/wiki/Cache_replacement_policies#LRU

replace it with Caffeine which uses the Window TinyFlu eviction policy which it sug-
gests provides a better hit-rate and lower memory footprint than LRU. We still use a
size bounded policy for the Cache. In addition Caffeine is designed as a thread-safe
map with atomicity guarantees. This means that outside of our own application re-
quirements for synchronization (i.e., Collection andDocument locking), we don’t need
to explicitly synchronize access to Caffeine.
Whereas previously we would globally synchronize on the Collections Cache, e.g.:
private Tuple2<Boolean, Collection> getOrCreateCollectionExplicit(final

Txn transaction, XmldbURI name) throws PermissionDeniedException,

IOException, TriggerException {

↪

↪

name = prepend(name.normalizeCollectionPath());

final CollectionCache collectionsCache = pool.getCollectionsCache();

boolean created = false;

synchronized(collectionsCache) {

...

}

We need now only lock the Collection that we are interested in to avoid races for it
against the Collection Cache:
private Tuple2<Boolean, Collection> getOrCreateCollectionExplicit(final

Txn transaction, final XmldbURI path) throws

PermissionDeniedException, IOException, TriggerException {

↪

↪

final XmldbURI collectionUri =

prepend(path.normalizeCollectionPath());↪

final XmldbURI parentCollectionUri =

collectionUri.removeLastSegment();↪

final CollectionCache collectionsCache = pool.getCollectionsCache();

try {

// 1) optimize for the existence of the Collection in the cache

try (final ManagedCollectionLock collectionLock =

readLockCollection(null, collectionUri)) {↪

final Collection collection =

collectionsCache.getIfPresent(collectionUri);↪

if (collection != null) {

return new Tuple2<>(false, collection);

}

}

59

https://github.com/ben-manes/caffeine
https://github.com/ben-manes/caffeine/wiki/Efficiency

...

This means that our Collection Cache now allows thread-safe concurrent reads and
writes per-key (i.e., per Collection).
Another added benefit of using Caffeine, is that it has excellent support for
reporting statistics which we have made available via JMX (commit 5a6619b):

Conclusion

Through review of both the locking mechanisms and collection cache in eXist-db 3.2.0,
we were able to identify many significant issues with the design and implementation
of concurrency in eXist-db. These issues generally fell into two categories: 1) a lack
of correct synchronization which could lead to data corruption, and 2) limits on con-
current throughput which were likely added in an effort to workaround the former
category of issues.
We have contributed several mechanisms which provide facilities for ensuring the cor-
rect operation of locking within eXist-db. Firstly, our Ensure Locking Annotations
allow locking contracts to be explicitly described at the code points where locking is
required. At runtime our Ensure Locking Annotations can report on any violations of
locking contracts to assist in development and/or debugging. Secondly, our centrali-
sation of locking through our Lock Manager enables our Lock Table implementation
to efficiently report locking events in close to real-time; developers can develop their
own LockEventListener implementations, whilst developers (and users) can use the

60

https://github.com/evolvedbinary/exist/commit/5a6619b3aaff98c1d67561a6373b2ab363a603cf

exported JMX beans to view, trace, and understand locks and lock waits for the pur-
poses of both debugging and performance tuning.
Further, we have made contributions in the areas of syntactical and semantic correct-
ness. Through refactoring APIs we have been able to provide syntax constructs which
are designed to try and help reduce locking issues introduced by developers. OurMan-
agedLocks andLockedCollections andDocuments help developers ensure correctness
by automatically handling the lifecycles of various locks by enforcing syntax patterns.
Our documented Collection and Document Lock Ordering pattern, along with its im-
plementation into the eXist-db code base, ensures semantically that locking schedules
between Collections and Documents are semantically understood and respected.
Finally, our main contribution was that of a Collection Locking Strategy to help with
deadlock avoidance between Collections in eXist-db. We examined many existing
schemes, and even adapted these to devise some new ones of our own. We were able
to discern and implement a scheme for eXist-db which is deadlock-free, at the cost
of imposing a single-writer/multi-reader concurrency constraint on the locking hier-
archy. Due to the single-writer/multi-reader constraint, which imposes a penalty on
concurrent performance, we chose to limit the locking hierarchy to Collections. This
artificial limit could be removed to also include Documents in the locking hierarchy.
Such a hierarchy could even be extended down into in-document nodes, and the pa-
pers (Implementing and Optimizing Fine-Granular Lock Management for XML Doc-
ument Trees (Bächle, Härder and Haustein, 2009), and DomLock (Kalikar and Nasre,
2016), would be worthy of further consideration. However, we believe we have struck
a balance between: 1) Contention: Collections are more contentious than Documents,
2) Performance: we can avoid the concurrent performance penalty for Documents, and
3) Betterment: eXist-db previously had many deadlock situations, we believe it now
has far less, with an additional potential for better performance. In summary, deadlock
avoidance is only implemented for Collections, but it is still possible (although rarer)
to encounter a deadlock between Collections and Documents. Ideally, we would en-
able the multi-writer/multi-reader facility we implemented by default, but deadlocks
would be more likely to occur, and deadlock resolution in eXist-db is not practically
possible without replacing the storage and transaction sub-systems.
Ultimately we have identified and implemented solutions to each of the discovered
issues as far as is possible in eXist-db without re-architecting its transaction and stor-
age systems. The impetus for this project was to be able to replace eXist-db’s single-
threaded access Collection Cache with an improved solution, which would then en-
able subsequently replacing that with an MVCC approach in Granite. Our eventual
adoption of Caffeine in a single-writer/multi-reader per Collection configuration as a
replacement for eXist-db’s legacy Collection Cache has shown that we were able to in-
crementally re-architect the concurrency controls of eXist-db, with the test suite provid-
ing assurances of correctness. Additionally, Granite, which does have the primitives
to support deadlock resolution, canmake use of themulti-writer/multi-reader locking
hierarchy available in eXist-db (when operating in pessimistic locking mode).
We hope that our contributions to eXist-db will prove valuable and provide a solid
base for further improving the correctness and concurrent performance of the database

61

https://pdfs.semanticscholar.org/22c4/c52baba1f1667c0bf9174cb54c7a483a8aa6.pdf
https://pdfs.semanticscholar.org/22c4/c52baba1f1667c0bf9174cb54c7a483a8aa6.pdf
http://dl.acm.org/citation.cfm?id=2851164&dl=ACM&coll=DL&CFID=769818847&CFTOKEN=56558482
http://dl.acm.org/citation.cfm?id=2851164&dl=ACM&coll=DL&CFID=769818847&CFTOKEN=56558482

system. Whilst we have done our utmost to verify our changes to eXist-db, wemake no
guarantee as to the absolute correctness of our implementation, andwelcome feedback.

Future Work

We note limitations in our work, and propose several directions for future work to
further build upon the contributions of this technical report.

1. Benchmarking
We have not performed any objective benchmarking between eXist-db 3.2.0 and
our branch of improvements. Subjectively we have not seen much difference
in performance. Whilst correctness should be of primary concern, and perfor-
mance second, it would be useful to understand any performance gain or loss
of our changes. Internally we will be benchmarking Granite before and after
these changes to eXist-db to understand the performance change in being able
to exploit multi-writer/multi-reader support in our integration of eXist-db.

2. MultiLock Stress Testing
The MultiLock implementation by Gudka and Eisenbach that we adopted,
whilst well documented, should be subjected to further rigorous testing with
jcstress.

3. Externalise Collection Locking
Currently the locking in MutableCollection.java is a mix of locked and
unlocked operations exported via methods named for that purpose, e.g.
Collection#getPermisisons() and Collection#getPermissionNoLock(). In-
stead, all Collection locking should be externalised from the Collection classes
to the callers. The contract should be explicitly documented and enforced via
the @EnsureLocked series of annotations.

4. Eliminate the erroneous LockMode.NO_LOCK
LockMode.NO_LOCK is used in eXist-db to cajole operations which require a lock
mode parameter, to perform an operation which would typically require lock-
ing, to be performed without locking. The use of this within the internal APIs
is somewhat questionable and is more often than not likely to lead to an error.
Once locking contracts are fully described by Ensure LockingAnnotations, work
should be undertaken to remove this erroneous locking mode.

5. Resolve Ensure Locking Annotations Reports
Whilst we have explicitly documentedmany of the required locking contracts by
means of our Ensure Locking Annotations, there are several reports of locking
violations which still need to be investigated and resolved. This will likely need
to be further refactored once Collection locking is externalised.

6. LockedCollection vs. LockedDocument pattern

62

https://github.com/kgudka/java-multilocks/blob/master/multilock/MultiLock.java
http://openjdk.java.net/projects/code-tools/jcstress/

As described in Implementation Asymmetry, we implemented two slightly dif-
ferent approaches to ARM for Collection and Document objects. In future, it
would be sensible to to survey eXist-db developers and derive a single approach
for ARM of Collections and Documents.

7. Collection-Document deadlocks
Whilst we have investigated and reduced the number of possible deadlocks in
eXist-db, our deadlock avoidance locking acquisition has focused almost entirely
on Collection locks as they have the greatest contention. It is still possible to
deadlock betweenCollection andDocument locks, and one such test that reliably
demonstrates this is org.exist.collections.ConcurrencyTest. Further work could
extend the hierarchical locking scheme to incorporate Document URIs into the
hierarchy with the aim of avoiding Collection-Document deadlocks. Further in-
vestigation of the TaDOM locking scheme by Bächle, Härder, and Haustein may
also be of assistance.

8. Refactor eXist-db’s BTree Cache
As described in Standard Java Locks, therewould need to be a considerable refac-
toring of eXist-db’s BTreeCache class and its interaction with the BTree class to
realise true shared-exclusive locking (i.e. muilti-reader/single-writer) access to
eXist-db’s .dbx BTree files. This does not apply to Granite, as Granite uses an
LSM (Log Structured Merge) storage system and not eXist-db’s BTrees.

63

https://github.com/evolvedbinary/exist/blob/locking-and-cache-improvements_report/test/src/org/exist/collections/ConcurrencyTest.java
https://pdfs.semanticscholar.org/22c4/c52baba1f1667c0bf9174cb54c7a483a8aa6.pdf

	Abstract
	Problem Statement
	Locking in eXist-db 3.2.0
	Problems with Locking in eXist-db
	Problem Solving Methodology
	Solutions
	Lock Manager
	Lock Table and JMX
	Standard Java Locks
	Managed Locks
	Collection and Document Lock Ordering
	Locked Collections and Locked Documents
	Ensure Locking Annotations
	Collection Locking Strategy
	Replacing the Collection Cache

	Conclusion
	Future Work

