
Asymmetrical Locking for eXist-db

Adam Retter, Evolved Binary

February 5, 2018

After providing some background information on the problem domain, we examine
various locking patterns, before justifying an asymmetrical approach. Finallywe exam-
ine code patterns for managing asymmetrical locking and propose a design pattern for
asymmetrical locking between Collection and persistent Document objects in eXist-db.

Background

In eXist-db there are two main types of container objects of concern, Collection and
Document. Collections in eXist-db are hierarchical just like folders on a filesystem, a
Collection links to child Documents or further sub-Collections.

1. A Collection object holds a map of Document (objects) by filename, and a set of
sub-Collection names. It also has the properties:

• ID
• URI
• Created date
• Permissions

2. A Document object contains a number of functions for reading nodes of the doc-
ument from storage. It holds an array of addresses for its child nodes. It also has
the properties:

• ID
• Filename
• Permissions
• Number of Child nodes
• Created date
• Last modified date
• Media Type
• Page Count
• User persistent lock id
• DocType (optional)
• WebDav lock token

eXist-db attempts to provide concurrent access to Collections and Documents. To try

1

https://github.com/eXist-db/exist/blob/release/eXist-3.6.1/src/org/exist/collections/MutableCollection.java#L80
https://github.com/eXist-db/exist/blob/release/eXist-3.6.1/src/org/exist/dom/persistent/DocumentImpl.java#L81
https://github.com/eXist-db/exist/blob/release/eXist-3.6.1/src/org/exist/collections/MutableCollection.java#L80
https://github.com/eXist-db/exist/blob/release/eXist-3.6.1/src/org/exist/dom/persistent/DocumentImpl.java#L81


and ensure integrity of Collections and Documents during concurrent read and writes,
eXist-db employs a shared-exclusive locking paradigm, where each Collection and
Document object has an associated lock object with both read and write modes. In
practice, a request for a write lock is only granted, if there are no read lock leases, and
read locks cannot be granted whilst a write lock is held. In simpler terms, we can
say that these Shared/Exclusive locks permit a single writer thread or multiple reader
threads.

Concurrent Use Cases

There are various classes of concurrent CRUD (Create, Read, Update and Delete) oper-
ations that may occur, which involve different combinations of objects. If we assume
that each CRUD operation is an independent transaction, and we wish to ensure the
consistency guarantees of an ACID (Atomicity, Consistency, Isolation, Durability) iso-
lation level of “serializable”, the CRUD use cases and their associated locks modes are:

1. Adding a Collection: requires only a write mode lock on the parent Collection.
2. Reading or writing any property of a Collection (excluding its URI or Permis-

sions): requires only a read or write mode lock on the Collection.
3. Renaming a Collection (modifying its URI): requires both a write mode lock on

its parent Collection (to update the sub-Collection names set) and a write mode
lock on the Collection.

4. Modifying the permissions of a Collection: requires awritemode lock on theCol-
lection. However, during this update, neither further read/write access should
be granted to child Documents or sub-Collections of the Collection recursively;
as permissions in eXist-db are hierarchical, just like in Linux, and so execute
access is required on the parent collection to read/write a document or sub-
collection.

5. Deleting a Collection: requires write mode locks on itself, all child Documents
and all sub-Collections (and their Documents recursively), and a write mode
lock on its parent Collection (to update the sub-Collection names set). Deleting
a Collection sub-tree might appear to be an expensive operation!

6. Adding a Document: requires both a write mode lock on the parent Collection,
and a write mode lock for the Document which is to be created (so as to stop a
concurrent user also creating the same document simultaneously).

7. Reading or writing any property of a Document (excluding its Filename): re-
quires only a read or write mode lock on the Document.

8. Replacing the content of a Document: this only involves modifying its array of
addresses for Child Nodes andNumber of Child nodes property, as such it is the
same as (7) in write mode.

2

https://en.wikipedia.org/wiki/Readers–writer_lock
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Isolation_%28database_systems%29#Serializable


9. Renaming a Document (modifying its Filename): requires both a write mode
lock on its parent Collection (to update the Documents map) and a write mode
lock on the Document.

10. Deleting a Document: requires both a write mode lock on the Document (to
prevent concurrent access), and a write mode lock on the parent Collection (to
update the Documents map).

11. Copying a Document: requires a read mode lock on the source Document, and
the same locking modes as (6) or (8), for adding the copied document to the
destination Collection, depending on whether it is a new document or replacing
just the content of an existing document.

12. Moving a document: requires the same locking modes as (10) on the source
Document and its parent Collection, and the same locking modes as (6) or (8)
for adding the moved document to the destination Collection, depending on
whether it is a new document or replacing just the content of an existing docu-
ment.

13. Copying a Collection: requires read mode locks on the source Collection, its
Documents and sub-Collections (recursively), and either:

1. if the destination Collection does not exist, a write mode lock on the parent
of the destination Collection, write mode locks on the destination Collec-
tion and any Documents and sub-Collections (recursively) which are to be
created.

2. if the destination Collection does exists, a write mode lock on the destina-
tion Collection and its Documents and sub-Collections (recursively) which
are to be replaced or removed, and write mode locks on any new sub-
Collections and their Documents (recursively) that will be created in the
destination Collection.

14. Moving a Collection: requires write mode locks on the parent of the source
Collection, the source Collection and its Documents and sub-Collections (recur-
sively), and either:

1. if the destination Collection does not exist, a write mode lock on the parent
of the destination Collection, write mode locks on the destination Collec-
tion and any Documents and sub-Collections (recursively) which are to be
created.

2. if the destination Collection does exists, a write mode lock on the destina-
tion Collection and its Documents and sub-Collections (recursively) which
are to be replaced or removed, and write mode locks on any new sub-
Collections and their Documents (recursively) that will be created in the
destination Collection.

3



Locking Patterns

To simplify this part of our discussion, we can for the time being ignore the hierarchical
nature of Collections in eXist-db, and concern ourselves with access to a Document
within a single Collection.
Our goal is simply to ensure safe concurrent access to a Document within a Collection.
We want to achieve this without introducing deadlocks.
A deadlock can occur where there are multiple locks and concurrent access. For exam-
ple, a scenariowhichwould exhibit this would be, if User A holds the lock for Resource
A, and wants to access Resource B, whilst User B holds the lock for Resource B and
wants to access Resource A, neither user canmake progress, they are “deadlocked” wait-
ing for the lock that each other has.
It is well known in Computer Science, that one mechanism for deadlock avoidance
is to ensure that locks are always acquired and released in the same order. So, for
example to rewrite the above scenario with lock ordering, User A would take the lock
on Resource A, User B would have to wait for the lock on Resource A (which held
by User A), User A would take the lock on Resource B and perform some work, User
A would then release the lock on Resource B, and then on Resource A, finally User B

can acquire a lock on Resource A, then Resource B and perform their operations before
releasing the locks.
A goal of any locking pattern that we create then, should be to ensure the consistent
ordering of lock acquisition and release.

Hierarchical Symmetrical Locking

A locking scheme which immediately presents itself, is that of a hierarchy of locks,
with one level for the Collection and one for the Document. The general form of such
a locking scheme is:

1. Get and Lock Collection
2. Get the Document from the Collection
3. Lock the Document
4. Perform operation(s) on the Document
5. Unlock the Document
6. Unlock the Collection

For example, to write to the content of a Document within a Collection, the progress
of this symmetrical scheme would look like:

1. Get and Lock Collection for READ
2. Get the Document from the Collection

4

https://en.wikipedia.org/wiki/


3. Lock the Document for WRITE
4. Modify the Document content
5. Unlock the Document (fromWRITE)
6. Unlock the Collection (from READ)

The symmetrical scheme expressed simply in Java might look like:
Collection collection = null;

try {

col = getCollection(”col1_name”, READ_MODE);

Document doc = null;

try {

doc = col.getDocument(”doc1_name”, WRITE_MODE);

// Here we perform operations on the Document content

} finally {

if (doc != null) {

doc.release(WRITE_MODE);

}

}

} finally {

if (col != null) {

col.release(READ_MODE);

}

}

This scheme ensures that both the Collection lock is always taken before the Document
lock and the Document lock is always released before the Collection lock, so that the
total lock ordering is consistent.
One of the nice features of this approach is that we can also easily improve the naive
Java code in various ways to enforce the locking order contract, and we can remove
the onus on the developer to explicitly use our pattern. One such improved approach
could be:
Collection collection = null;

try (final Collection col = getCollection(”col1_name”, READ_MODE);

final Document doc = col.getDocument(”doc1_name”, WRITE_MODE)) {

// Here we perform operations on the Document content

}

}

The above code assumes that Collection and Document are refactored to implement

5



java.lang.AutoCloseable, and that AutoCloseable#close() releases the locks for the
modes that we acquired in the try-with-resources expression.
Unfortunately, whilst the above scheme fits our needs and we can express a design
pattern for it nicely in code, it has a major drawback that the Collection remains locked
whilst the operation on the Document is performed. There is no reason the Collection
need remain lockedwhilst the Document ismodified, and as operations onDocuments
may be resource intensive, this limits the concurrent operations that may be performed
on Collections.

Hierarchical Asymmetrical Locking

We combine our previous Hierarchical Locking approach with Lock Interleaving on
lock release between the levels of the hierarchy to try and release the Collection lock
as early as possible. This subsequently reduces contention on the Collection lock and
improves concurrency. Keeping in mind our previously described Use Cases, we need
to be able to perform operations on locked Documents both before and after releasing
the Collection lock. We must also preserve the goal of always acquiring and releasing
locks in the same order. We believe that the following locking scheme provides such
flexibility:

1. Get and Lock Collection
2. Perform any operation(s) that only require a Collection lock
3. Get the Document from the Collection
4. Lock the Document
5. Perform any operation(s) that require both a Collection and Document lock
6. Unlock the Collection
7. Perform any operation(s) that require only a Document lock
8. Unlock the Document

For example, to write to the content of a Document within a Collection, the progress
of this asymmetrical scheme would look like:

1. Get and Lock Collection for READ
2. Get the Document from the Collection
3. Lock the Document for WRITE
4. Unlock the Collection (from READ)
5. Modify the Document content
6. Unlock the Document (fromWRITE)

The asymmetrical scheme expressed simply in Java might look like:

6

https://docs.oracle.com/javase/7/docs/api/java/lang/AutoCloseable.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html


Collection col = null;

Document doc = null;

try {

col = getCollection(”col1_name”, READ_MODE);

// Here we perform any operation(s) that only require the Collection

lock↪

try {

doc = col.getDocument(”doc1_name”, WRITE_MODE);

// Here we perform any operation(s) that require both the

Collection lock and Document lock↪

} finally {

if (col != null) {

col.release(READ_MODE);

}

}

// Here we perform any operation(s) that only require the Document

lock ...like modifying the Document content↪

} finally {

if (doc != null) {

doc.release(WRITE_MODE);

}

}

}

This scheme, like the symmetrical scheme, still ensures that the total locking order is
consistent, but uses a modified ordering to interleave the release of the Document and
Collection locks. It gives us greater flexibility and the ability to release the Collection
lock sooner and therefore reduce lock contention.
Unfortunately, whilst this is a better scheme and our choice, it ismuch harder to express
the pattern in Java in amore compact and safemanner when comparedwith that of the
symmetrical scheme. In the next section, we examine variations on Java code patterns
of the asymmetrical scheme.

Patterns for implementing Asymmetrical Locking in Java

Improving on the above Java expression of the asymmetrical scheme described above
poses several challenges:

7



1. as its expression in the Java syntax itself is asymmetrical, it does not lend itself
well to RAII like schemes such as Java 7’s try-with-resources.

2. eXist-db’s code base was started in Java in 2001, long before the current resur-
gence of Functional Programming to the popular mainstream, and as such uses
Exceptions heavily for error conditions. This makes utilizing Java 8 lamdas for
such resource (lock) management a difficult integration task.

With that in mind we present several approaches and discuss their merits and short-
comings. Many of these patterns were either directly influenced by or suggested by
Stack Overflow users in response to the question: Best design pattern for managing
asymmetrical resource use.

try-with-resources Lock Swapping

An initial approach we came up with for using try-with-resources when you want
to asymmetrically manage object lifetimes, was to swap the Collection lock with the
Document lock when the Document is retrieved from the Collection, this allows the
locks to be released in the reverse order.
try (final ManagedRelease<Collection> mcol =

new ManagedRelease<>(getCollection(”col1_name”, WRITE_MODE))) {

// Here we perform any operation(s) that only require the Collection

lock↪

try (final ManagedRelease<Document> mdoc =

mcol.withAsymetrical(mcol.resource.getDocument(”doc1_name”,

WRITE_MODE))) {↪

// Here we perform any operation(s) that require both the

Collection lock and Document lock↪

} // NOTE: Collection lock is released here

// Here we perform any operation(s) that only require the Document

lock↪

} // NOTE: Document lock is released here

This approach requires the introduction of a ManagedRelease classwhich has amutable
reference to the lock it needs to release. When #withAsymetrical(AutoCloseable) is
called, the reference to the Collection lock object in mcol is replaced with a reference
to the Document lock, and mdoc has its lock reference set to the Collection lock. The
complete implementation for this pattern can be found at adamretter/asymmetrical-
locking.

8

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
http://coderoncode.com/functional-programming/2017/04/23/you-should-learn-functional-programming-in-2017.html
http://coderoncode.com/functional-programming/2017/04/23/you-should-learn-functional-programming-in-2017.html
https://stackoverflow.com/questions/46864834/best-design-pattern-for-managing-asymmetrical-resource-use
https://stackoverflow.com/questions/46864834/best-design-pattern-for-managing-asymmetrical-resource-use
https://github.com/adamretter/asymmetrical-locking/tree/master/src/main/java/swap
https://github.com/adamretter/asymmetrical-locking/tree/master/src/main/java/swap


Advantages Disadvantages
Manages the release of the locks for
the developer.

Without the code comments inline it is not
obvious which locks are released when.

Introduces a small amount of
changes.

Likely to lead to developer confusion and
mistakes.
It is possible to accidentally use the
Collection after it has been unlocked,
because the reference is still present.

try-with-resources Idempotent Close

An approach suggested by SergGr on Stack Overflow would be to make the #close()
(#release()) method of Collection Idempotent. Unfortunately, since our question was
slightly underspecified, we can’t directly do as SergGr suggested because we have the
situation of nested locking, and unlocking more times than we should might cause
unintended consequences. However, we can modify the suggested approach to better
suit our needs:
try (final CollectionWithLock col = getCollection(”col1_name”,

WRITE_MODE)) {↪

// Here we perform any operation(s) that only require the Collection

lock↪

try (final Document doc = col.getDocument(”doc1_name”, WRITE_MODE)) {

// Here we perform any operation(s) that require both the

Collection lock and Document lock↪

col.close(); // NOTE: Collection lock is released here

// Here we perform any operation(s) that only require the Document

lock↪

} // NOTE: Document lock is released here

} // NOTE: nothing is released here (as already done above)

The class CollectionWithLock simply guards against us releasing the lock more than
once:
class CollectionWithLock extends Collection {

private boolean closed = false;

@Override

9



public void close() {

if(!closed) {

closed = true;

super.close();

}

}

}

Advantages Disadvantages
Partially manages the release of the
locks for the developer.

By default does not release locks in the
asymmetrical scheme order.

Introduces a small amount of
changes, making integration with
existing code simple.

If the developer forgets to call col.close()
at the appropriate place the desired locking
scheme is inconsistent, possibly leading to
deadlocks.
It is possible to accidentally use the
Collection after it has been unlocked,
because the reference is still present.

try-with-resources, Lambdas, and Abstraction

An approach suggested by Douglas on Stack Overflow would be to take our initial
try-with-resources Lock Swapping approach and add an additional level of abstraction to
make the lifecycle of the locks clear within enclosing try-with-resources expressions.
Wemodified the suggested approach, so thatmethod namingmight better our domain,
and expanded on the resource management properties:
try(final ManagedCollectionAndDocument mcoldoc1 =

ManagedFactory.manage(brokerPool,↪

”col1_name”, READ_MODE,

(broker, col) -> ”doc1_name”, WRITE_MODE)) {

try(final ManagedWrapper<Collection> wcol1 =

mcoldoc1.withCollection()) {↪

// Here we perform any operation(s) that only require the

Collection lock↪

}

// NOTE: Collection is not actually closed yet, but wcol1 is now out

of scope↪

10



try(final ManagedWrapper<Tuple2<Collection, DocumentImpl>> wcoldoc1 =

mcoldoc1.withCollectionAndDocument()) {↪

// Here we perform any operation(s) that require both the

Collection lock and Document lock↪

} // NOTE: Collection is closed here

// NOTE: Document is not actually closed yet, but wcoldoc1 is now out

of scope↪

try(final ManagedWrapper<DocumentImpl> wdoc1 =

mcoldoc1.withDocument()) {↪

// Here we perform any operation(s) that only require the Document

lock↪

} // NOTE: Document is closed here

}

Internally the acquisition of the Collection and Document are done lazily, so you
need not call all methods in sequence, if you have no operations to perform at
the various lock stages. For example, you need not even call withCollection or
withDocumentAndCollection, and could just call withDocument if you just needed
to perform an operation on the Document (after it has been safely retrieved from
the Collection). The complete implementation for this pattern can be found at
adamretter/asymmetrical-locking.
This was the most complicated to implement of our patterns, but offers quite some
safety which can be encoded into the implementation by managing state.

Advantages Disadvantages
Manages the release of the locks for
the developer.

The use of lambdas and lazy initialisation
leads to a complex implementation.

Introduces a small amount of
changes (to existing code blocks).

The use of lambdas makes it hard to
integrate with existing Exception based
error handling.

It is impossible to use the
Collection or Document after it has
been unlocked, because the
references are out of scope.

Developer must always call the functions in
the correct order, i.e. cannot call
withDocument and then withCollection.

11

https://github.com/adamretter/asymmetrical-locking/tree/master/src/main/java/twr


Basic Lambda API

Another approach we investigated was using function passing as opposed to
try-with-resources. In this approach we encapsulate our messy lock handling inside
a function which we call BasicLamdaApi.execute, and we instead pass in (up to) three
functions, one for each of the locking stages at which we wish to perform operations
on the objects.
final Function<Collection, Long> colFun = collection -> {

// Here we perform any operation(s) that only require the Collection

lock↪

return collection.getCreationTime();

};

final BiFunction<Collection, DocumentImpl, String> colDocFun =

(collection, document) -> {↪

// Here we perform any operation(s) that require both the Collection

lock and Document lock↪

return collection.getURI().append(document.getFileURI()).toString();

};

final Function<DocumentImpl, Long> docFun = document -> {

// Here we perform any operation(s) that only require the Document

lock↪

final long now = System.currentTimeMillis();

document.getMetadata().setLastModified(now);

return now;

};

final Tuple3<Optional<Long>, Optional<String>, Optional<Long>> results =

BasicLambdaApi.execute(↪

brokerPool,

”col1_name”, READ_MODE,

Optional.of(colFun),

collection -> ”doc1_name”, WRITE_MODE,

Optional.of(colDocFun),

Optional.of(docFun)

);

12



As a user of such an API, it has a very nice lightweight and clean design to it.
However, our ability to integrate easily with legacy code, which uses Exceptions
for error notification, is limited by the use of functional programming constructs.
For example, Function does not allow you to throw any Checked Exception within
its lambda body. The complete implementation for this pattern can be found at
adamretter/asymmetrical-locking.

Advantages Disadvantages
Manages the release of the locks for
the developer.

Would require a lot of changes to existing
code.

It is impossible to use the
Collection or Document after it has
been unlocked, because the
references are out of scope.

Integration with existing code that makes
use of Checked Exceptions is tricky.

Ordering is implicit, so the
developer does not need to worry.
Unlike the previous example, there
is no lazy evaluation or need to
maintain state across method calls,
so the implementation is quite
simple.

Fluent Lambda API

A final approachwe consideredwas suggested by Dean Xu on StackOverflow, we have
modified it so that acquisition of resources is lazy, and that the method names better
relate to our domain. It builds on the functional lambdas approach but uses a Fluent
approach to construct an operation to execute. We recognize thatwe could also employ
a builder pattern within an implementation of this Fluent API to enforce that only ap-
propriate methods can be called within each state, so for example we could prevent
withCollection being called after withDocument.
final Function<Collection, Long> colFun = collection -> {

// Here we perform any operation(s) that only require the Collection

lock↪

return collection.getCreationTime();

};

final BiFunction<Collection, DocumentImpl, String> colDocFun =

(collection, document) -> {↪

13

https://github.com/adamretter/asymmetrical-locking/tree/master/src/main/java/lambda


// Here we perform any operation(s) that require both the Collection

lock and Document lock↪

return collection.getURI().append(document.getFileURI()).toString();

};

final Function<DocumentImpl, Long> docFun = document -> {

// Here we perform any operation(s) that only require the Document

lock↪

final long now = System.currentTimeMillis();

document.getMetadata().setLastModified(now);

return now;

};

final Tuple3<Long, String, Long> results = BasicFluentApi

.withCollection(”col1_name”, READ_MODE)

.execute(colFun) // Lock

Collection, and perform on Collection↪

.withDocument(collection -> ”doc1_name”, WRITE_MODE)

.execute(colDocFun) // Lock

Document, perform on Collection and Document↪

.withoutCollection() // Unlock

Collection↪

.execute(docFun) // Perform on

Document↪

.doAll(); // Unlock any

remaining (e.g. Document)↪

Advantages Disadvantages
Manages the release of the locks for
the developer.

Would require a lot of changes to existing
code.

It is impossible to use the
Collection or Document after it has
been unlocked, because the
references are out of scope.

Integration with existing code that makes
use of Checked Exceptions is tricky.

Ordering is implicit, so the
developer does not need to worry.

Complexity of implementation would be in
state changes using a Builder pattern before
doAll is called.

14



Advantages Disadvantages
Builder API is powerful. 1. we can
be precise about our return types
(don’t need Optional). 2. Could be
extended and used to access more
than one Collection or Document at
a time.
Possibly provides the cleanest
approach.

The complete implementation for this pattern can be found at adamretter/asymmetrical-
locking, although due to the verbosity of the builder state machine implementation, it
might be easier to study the unit tests.

Conclusion

Each of the proposed Patterns for implementing Asymmetrical Locking in Java has
varying advantages and disadvantages which we have summarised.
Initiallywe favoured the Fluent LambdaAPI pattern due to the clean, clear, and concise
code pattern that it enforces through its use. Its design explicitly prevents developers
from being able to misuse the desired asymmetrical locking pattern. We implemented
a version of this within eXist-db here. Unfortunately, we found that in practice, the
main expected disadvantage of this pattern (namely integrating with the existing non-
functional legacy code), proved too costly, and would have involved a huge amount
of re-factoring of eXist-db’s existing code base to achieve the integration; whilst not
impossible, it would have greatly exceeded the resources available to this project.
Learning from our experiences of integration, we settled on the try-with-resources
Idempotent Close pattern, because it required the least amount of changes to the ex-
isting code base for integration. To try and reduce confusion of the locking pattern in
futurewemade careful use to annotate our explicit use of eagerly closing theCollection
lock by calling #close(), e.g.:
// NOTE: early release of Collection lock inline with Asymmetrical Locking

scheme↪

collection.close();

An example of this can be seen inline in the updated AbstractCompressFunction in
eXist-db.
We hope that this Asymmetrical Locking Pattern is just one step towards further work
in the future to improve and simplify the locking sub-systems in eXist-db. Certainly in
the future, we would hope to see eXist-db adopt a more modern and functional style

15

https://github.com/adamretter/asymmetrical-locking/tree/master/src/main/java/lambda
https://github.com/adamretter/asymmetrical-locking/tree/master/src/main/java/lambda
https://github.com/adamretter/asymmetrical-locking/tree/master/src/test/java/lambda/FluentLambdaAPITest.java
https://github.com/adamretter/exist/blob/cache-improvements/src/org/exist/storage/FluentBrokerAPI.java#L45
https://github.com/adamretter/exist/blob/a60aee9b73df2313203c6176de65771de3818a5d/extensions/modules/src/org/exist/xquery/modules/compression/AbstractCompressFunction.java#L179


of coding, which would allow an implementation such as the Fluent Lambda API to
be easily used in practice.

16


	Background
	Concurrent Use Cases

	Locking Patterns
	Hierarchical Symmetrical Locking
	Hierarchical Asymmetrical Locking

	Patterns for implementing Asymmetrical Locking in Java
	try-with-resources Lock Swapping
	try-with-resources Idempotent Close
	try-with-resources, Lambdas, and Abstraction
	Basic Lambda API
	Fluent Lambda API

	Conclusion

